
rkfu=`ifbkq=^ka=pbosbo=
rpboÛp=drfab

R
SI

T
 7

.2

Ñçê=pÉÅìêÉ=fq

Created on July 30, 2010

User's Guide

Reflection for Secure IT
UNIX Client and Server

Version 7.2

© 2010 Attachmate Corporation. All rights reserved.

No part of the documentation materials accompanying this Attachmate
software product may be reproduced, transmitted, transcribed, or
translated into any language, in any form by any means, without the
written permission of Attachmate Corporation. The content of this
document is protected under copyright law even if it is not distributed with
software that includes an end user license agreement.

The content of this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a
commitment by Attachmate Corporation. Attachmate Corporation assumes
no responsibility or liability for any errors or inaccuracies that may appear
in the informational content contained in this document.

Attachmate, the Attachmate logo, and Reflection are registered trademarks
of Attachmate Corporation, in the USA. All other trademarks, trade names,
or company names referenced herein are used for identification only and
are the property of their respective owners.

Attachmate Corporation
1500 Dexter Avenue North
Seattle, WA 98109
USA
+1.206.217.7100
http://www.attachmate.com

Contents

Installation 7

Replace an Existing Secure Shell Program 9

Install on Linux 10

Install to a Non-Default Location on Linux 11

Install on Sun Solaris 12

Install to a Non-Default Location on Sun Solaris 13

Install on HP-UX 14

Install on IBM AIX 15

Migrate Settings from Existing Configuration Files 16

Install Reflection PKI Services Manager 17

Getting Started 19

Start and Stop the Server 19

Make an SSH Connection 21

Transfer Files Using sftp 22

Transfer Files Using scp 23

Understanding Secure Shell 24

Configuration Files 27

Client Configuration Files 27

Configuration File Format 28

Host Stanzas 28

Command Line Options 29

Server Configuration Files 29

Server Subconfiguration Files 30

Subconfiguration File Samples 31

Data Protection 33

Encryption 33

Data Integrity 34

Configuring Ciphers and MACs 34

FIPS Mode 35

iv Contents

Server Authentication 37

Public Key Authentication Overview 37

Create a New Host Key 39

Add a Key to the Client Known Hosts List 39

Display the Fingerprint of the Host Public Key 41

Server Certificate Authentication Overview 41

Obtain Authentication Certificates 42

Configure Server Certificate Authentication 44

Kerberos (GSSAPI) Authentication 47

Kerberos System Requirements 47

Configure Kerberos Server and Client Authentication 48

User Authentication 51

Password and Keyboard Interactive Authentication 52

Configure Password Authentication 52

Configure Keyboard Interactive Authentication 53

Public Key Authentication 54

Configure Public Key User Authentication 54

Use the Key Agent 56

Certificate Authentication for Users 57

Configure Certificate Authentication for Users 59

Pluggable Authentication Modules (PAM) 62

Configure PAM Authentication 63

RADIUS Authentication 65

Configure RADIUS Authentication 66

RSA SecurID Authentication 67

Configure SecurID Authentication 67

Configure Account Management on HP-UX Trusted Systems 69

Secure File Transfer 71

Secure File Transfer (sftp) 71

Use sftp Interactively 72

Run sftp Batch Files 73

 Contents v

Configuring the sftp Transfer Method (ASCII or Binary) 74

Secure File Copy (scp) 75

Smart Copy and Checkpoint Resume 76

Configure Upload and Download Access 77

Set File Permissions on Downloaded Files 78

Set File Permissions on Uploaded Files 79

Port Forwarding 83

Local Port Forwarding 84

Remote Port Forwarding 87

Configure Port Forwarding 89

FTP Forwarding 90

X Protocol Forwarding 91

Port Forwarding Settings 92

Controlling Access and Authorization 95

Access Control Settings 95

Using Allow and Deny Keywords 96

Configuring User Access 97

Configuring Group Access 98

Configuring Client Host Access 98

Debug Logging and Auditing 101

Client Debugging 101

Server Debugging 102

Auditing (Message Logging) 103

Solaris Audit Support 105

Troubleshooting 107

Troubleshooting Public Key Authentication 107

Troubleshooting Slow File Transfer Speed 109

vi Contents

Appendix 111

Files Used by the Client 112

Files Used by the Server 114

Client Configuration Keywords 118

Server Configuration Keywords 132

File and Directory Permissions 151

ssh Command Line Options 154

ssh Escape Sequences 161

ssh Exit Values 162

ssh-keygen Command Line Options 163

scp Command Line Options 167

sftp Command Line Options 172

Supported sftp Commands 176

ssh-add Command Line Options 181

ssh-agent Command Line Options 183

sshd Command Line Options 185

ssh-certview Command Reference 187

ssh-certtool Command Reference 189

winpki and pkid Command Reference 193

pkid_config Configuration File Reference 197

pki_mapfile Map File Reference 203

Sample Mapping Rules 210

Sample Map File with RuleType Stanzas 212

PKI Settings Migration 213

PKI Services Manager Return Codes 216

Glossary of Terms 219

Index 223

Installation

In this Chapter

Replace an Existing Secure Shell Program 9

Install on Linux 10

Install to a Non-Default Location on Linux 11

Install on Sun Solaris 12

Install to a Non-Default Location on Sun Solaris 13

Install on HP-UX 14

Install on IBM AIX 15

Migrate Settings from Existing Configuration Files 16

Install Reflection PKI Services Manager 17

Reflection for Secure IT UNIX Client and Server provides secure
connections between computers. Use Reflection for Secure IT for secure file
transfer, secure remote administration of computers, and to tunnel
application traffic securely across a network.

For information about supported platforms and additional system
requirements, see Technical note 1944
(http://support.attachmate.com/techdocs/1944.html).

C H A P T E R 1

http://support.attachmate.com/techdocs/1944.html�

8 Reflection for Secure IT

Client features

Both the Reflection for Secure IT client and server install the following
Secure Shell client features.

 ssh (Secure Shell client)

 ssh2_config (client configuration file)

 sftp (secure file transfer)

 scp (secure file copy)

 ssh-keygen (key generation utility)

 ssh-agent (key agent)

 ssh-add (add identities to the agent)

 ssh-askpass (X11 passphrase utility)

 ssh-certtool (certificate management utility)

 ssh-certview (certificate viewing utility)

By default, client executables are installed to /usr/bin. (On Linux ssh-
askpass is installed to /usr/libexec.) The global client configuration file is
installed to /etc/ssh2/.

Server features

The Reflection for Secure IT server includes all of the client features listed
above plus the following Secure Shell server features.

 sshd (Secure Shell daemon)

 sshd2_config (server configuration file)

 A host public/private key pair (see note below)

 sftp-server (file transfer subsystem used by the server)

By default, the sshd server is installed to /usr/sbin. The sftp-server is
installed to /usr/bin. (On Linux sftp-server is installed to /usr/libexec.)
The server configuration file is installed to /etc/ssh2.

Note: The server installation package checks to see if an existing host key
pair is already present. If no host key is found, the package creates a new
host key pair and the server uses this pair for host authentication. If a host
key already exists in /etc/ssh2, Reflection for Secure IT uses this key. If an
OpenSSH host key is found in /etc/ssh, Reflection for Secure IT migrates
the key to the correct format and location and uses the migrated key.

 Chapter 1 Installation 9

Replace an Existing Secure Shell Program

If you're installing on a system that is already running a Secure Shell client
or server, you must uninstall the prior version before you install Reflection
for Secure IT. This requirement applies to earlier versions of Reflection for
Secure IT, as well as F-Secure SSH, OpenSSH, and other Secure Shell
implementations.

To install on a system that is currently running Secure Shell

1 Log in as root.

2 (Server only) Stop the sshd service.

3 Uninstall your existing Secure Shell product.

4 (AIX only) Check for the existence of a hidden .toc file in the directory
from which you ran installp to uninstall your previous version. If this file
is present, remove or rename it.

5 Install the Reflection for Secure IT client or server.

6 If you use public key authentication, ensure that your files and
directories are configured with correct permissions. This release of
Reflection for Secure IT requires a greater degree of security than was
required in previous releases. If files and directories are not sufficiently
protected, public key authentication will fail. For details, see File and
Directory Permissions (page 151).

Note: The StrictModes setting affects the level of protection required for
files and directories used for public key authentication. To ensure
enforcement of a satisfactory level of security, this setting is now
enabled by default. Some file and directory permissions are enforced
even when this setting is disabled.

7 (Optional) If you had configured a non-default client or server
configuration file, you will find a backup copy of your file in the
configuration file directory. (For details see the note below.) Use these
backup files to merge your non-default settings to the new configuration
file.

10 Reflection for Secure IT

Notes:

 The server installation package checks to see if an existing host key pair
is already present. If no host key is found, the package creates a new
host key pair and the server uses this pair for host authentication. If a
host key already exists in /etc/ssh2, Reflection for Secure IT uses this
key. If an OpenSSH host key is found in /etc/ssh, Reflection for Secure
IT migrates the key to the correct format and location and uses the
migrated key.

 The details of how backup configuration files are created vary with the
associated operating system.

• On all platforms except AIX, if you have made any changes to the
default client and/or server configuration file, the installer backs up
the file when you uninstall. (The file extension added to this backup
depends on the native installer.)

• On AIX, no backup file is created when you uninstall; instead, a
backup file is created if a non-default configuration file is present
when you install Reflection for Secure IT.

 Key pairs created with previous Reflection for Secure IT versions are
compatible with the current version. No conversion is necessary.

 The StrictModes default value is now "yes" for both the client and
server.

 If /etc/pam.d/ssh exists, it is backed up an a new file is put in place.

 Subconfiguration files, if present, are not touched.

Install on Linux

To install Reflection for Secure IT on Linux

1 Log in as root.

2 Copy the installation package file to your computer and navigate to the
directory that contains this file.

3 Use rpm to install the package:

rpm -ivh package_name.rpm

For example:

rpm -ivh rsit-client-7.2.0.999-i386-rhel.rpm

 Chapter 1 Installation 11

To uninstall

1 Log in as root.

2 Enter one of the following commands.

For Use

server rpm -e --nodeps rsit-server

client rpm -e --nodeps rsit-client

Install to a Non-Default Location on Linux

You can use the rpm --relocate option to specify new target locations for
installed files. Two modifications are supported.

 Specify a new target location for configuration files and keys that are
installed by default to /etc/ssh2.

 Specify a new target location for binaries and man pages that are
installed by default to /usr.

The following installed items are not relocated: startup and shutdown
scripts, the cryptographic module, and the PKI client library.

To install to a non-standard location

1 Create the target directories.

2 Use the rpm --relocate option to specify your target directories. The
general syntax is:

rpm --install --relocate /usr=PrefixDir --relocate /etc/ssh2=SysConfDir
package_file.rpm

For example

rpm --install --relocate /usr=/opt/rsit --relocate /etc/ssh2=/opt/rsit/etc
rsit-server-7.2.0.999-i386-rhel.rpm

Notes:

 Use --relocate modifications to the installation only as described above.
Using other modifications will likely result in an unusable installation.

 To provide access to binaries and man pages after installing to a non-
default location, modify the system PATH and MANPATH variables.

12 Reflection for Secure IT

Install on Sun Solaris

To install Reflection for Secure IT on Solaris

1 Log in as root.

2 Copy the installation package file to your computer and navigate to the
directory that contains this file.

3 Use uncompress to unpack the package.

uncompress package_name.pkg.Z

For example:

uncompress rsit-client-7.2.0.999-sparc-solaris10.pkg.Z

4 Use pkgadd to install the package.

pkgadd -d package_name.pkg

For example:

pkgadd -d rsit-client-7.2.0.999-sparc-solaris10.pkg

Note: On systems running Solaris 10, you can use zones to partition a single
Solaris instance into isolated application environments. For information
about installing Reflection for Secure IT in a zones environment, refer to
Technical Note 2254 (http://support.attachmate.com/techdocs/2254.html).

To uninstall

1 Log in as root.

2 Use the pkgrm command to remove the package:

For Use

server pkgrm RSITsshs

client pkgrm RSITsshc

http://support.attachmate.com/techdocs/2254.html�

 Chapter 1 Installation 13

Install to a Non-Default Location on Sun Solaris

Note: Installing to a non-default location is supported on Solaris 10; it is not
available on Solaris 8 or 9.

To install Reflection for Secure IT to a non-default location, you can create
a response file (a text file that provides information to the installer
package) and use the PREFIX variable to identify the target directory for
the installation. The PREFIX variable has the following effects:

 Configuration files and keys that are installed by default to /etc/ssh2 are
relocated to $PREFIX/etc/ssh2.

 Binaries and man pages that are installed by default to /usr are
relocated to $PREFIX.

The following installed items are not relocated: startup and shutdown
scripts, the cryptographic module, and the PKI client library.

To install to a non-default location

1 Create the target directory.

2 Create a response file (rsp in this example) that redirects the
installation to your target directory (/opt/rsit in this example).

echo "PREFIX=/opt/rsit" > rsp

3 Use the pkgadd -r option to provide the relocation information during
the installation. For example:

pkgadd –r rsp -d rsit-server-7.2.0.999-x64-solaris10.pkg

Note: To provide access to binaries and man pages after installing to a non-
default location, modify the system PATH and MANPATH variables.

14 Reflection for Secure IT

Install on HP-UX

To install Reflection for Secure IT on HP-UX

1 Log in as root.

2 Copy the installation package file to your computer and navigate to the
directory that contains this file.

3 Use uncompress to unpack the package.

uncompress package_name.depot.Z

For example:

uncompress rsit-client-7.2.0.999-ia64-hpux-11.23.depot.Z

4 Use swinstall to install the unpacked package.

swinstall -s full_path_and_package_name.depot RSIT

For example:

swinstall -s /rsit/rsit-server-7.2.0.999-ia64-hpux-11.23.depot RSIT

To uninstall

1 Log in as root.

2 (Server only) Use the server script to stop the sshd service.

/sbin/init.d/sshd2 stop

3 Use swremove to uninstall the package.

swremove RSIT

Note: Installing to non-standard locations is not supported on HP-UX.

 Chapter 1 Installation 15

Install on IBM AIX

To install Reflection for Secure IT on IBM AIX

1 Log in as root.

2 Copy the installation package file to your computer and navigate to the
directory that contains this file.

3 Use the uncompress command to unpack the package.

uncompress package_name.bff.Z

For example:

uncompress rsit-server-7.2.0.999-powerpc-aix5.bff.Z

4 Use the installp command to install the package.

installp -d. RSIT.ssh

To uninstall

1 Log in as root.

2 (Server only) Use the server script to stop the sshd service.

/etc/rc.d/init.d/sshd stop

3 Use the installp command to uninstall the package.

installp -u RSIT.ssh

4 Remove the hidden .toc file in the directory from which you ran installp
in step 3.

Note: Installing to non-standard locations is not supported on IBM AIX.

16 Reflection for Secure IT

Migrate Settings from Existing Configuration Files

A migration script is installed with Reflection for Secure IT, which you can
use to migrate settings configured using any of the following products:

F-Secure UNIX clients and servers
Reflection for Secure IT 6.x UNIX clients and servers
Reflection for Secure IT 7.x UNIX clients and servers.

The migration script is installed to:

/etc/ssh2/migrate.sh

The script examines your configuration files to determine if setting changes
are required. If changes are needed, you are prompted to confirm that you
want to apply these changes. After you confirm the migration, new
configuration files are created with the required updates along with backups
of your original files. All operations are detailed in the script’s output and
log files. The log files document which settings have been migrated and
which cannot be migrated. Log files are created in the same directory as the
converted file and have names based on the converted filename (for
example, sshd2_config_migration.log).

To migrate global configuration files

Note: When you run the migration script with no arguments, it migrates
files located in the/etc/ssh2 directory. If /etc/ssh2/sshd2_config and
/etc/ssh2/ssh2_config contain non-default settings, you are asked if you
want to migrate these files. If these settings contain default values (which is
the expected state after you uninstall the prior version and then install the
current version), the script looks for the most recent backup files (for
example *.rpmsave, *.save or *.backup) and asks if you want to migrate
settings in the backup files.

1 Log in as root.

2 Uninstall the prior version.

3 Install the new version.

4 Run the migration script with no arguments:

/etc/ssh2/migrate.sh

5 Respond to the prompts.

6 Review the migrated settings and the migration log and, where required,
merge settings from the migrated backup files into sshd2_config and
ssh2_config.

 Chapter 1 Installation 17

To migrate a user configuration file

1 Log in as root.

2 Run the migration script and specify the file you want to migrate. For
example:

/etc/ssh2/migrate.sh client ~/.ssh2/ssh2_config

To migrate PKI settings

You can use the following procedure to migrate certificate settings if
Reflection PKI Services Manager is installed on a computer that has
Reflection for Secure IT 6.x or F-Secure configuration files.

1 Log in as root.

2 Use pkid with the -m option to migrate settings from your prior version
configuration files. For example:

To migrate PKI settings in sshd2_config and ssh2_config files located in
/etc/ssh2/ and migrate these settings to pki_config and pki_map files in
the PKI Services Manager configuration folder:

/usr/local/sbin/pkid -m /etc/ssh2/

To migrate PKI settings in sshd2_config.backup and create new PKI
Services Manager configuration files in the specified output directory:

/usr/local/sbin/pkid -b /output/path/ -m /etc/ssh2/sshd2_config.backup

3 Review the migration log, which is created in the logs directory located
in the PKI Services Manager data directory. (By default, this log records
at a level of "info". The level can be elevated using -d.)

Note: If the pki_config file in the destination folder already has a trust
anchor configured, no migration occurs. This helps ensure that the
migration won't overwrite modifications you have already configured.

Install Reflection PKI Services Manager

Reflection PKI Services Manager is a service that provides X.509 certificate
validation services. If you need support for user or server certificate
authentication, you'll need to download and install this application. It is
available at no additional charge.

To install Reflection PKI Services Manager

1 Log in as root.

2 Copy the installation package file to your computer and navigate to the
directory that contains this file.

18 Reflection for Secure IT

3 Use gzip to unzip the package:

gzip -d package_name.tar.gz

For example:

gzip -d pkid_1.0.0.999-i386-solaris.gz

4 Use tar to expand the file:

tar -xf package_name.tar

This creates a directory based on the package name. For example:

pkid_1.0.0.999--i386-solaris/

5 Change to this directory. For example:

cd pkid_1.0.0.999-i386-solaris

6 Run the install script:

./install.sh

7 You are prompted to specify installation locations. To accept the default
locations (recommended), press Enter in response to these prompts.

Notes:

 On UNIX the install script automatically starts the service.

 Before Reflection PKI Services Manager can validate certificates you
need to edit the default configuration and map files.

To uninstall

1 Log in as root.

2 Run the uninstall script. This script is installed to the bin directory in
the PKI Services Manager data folder. The default path is:

/opt/attachmate/pkid/bin/uninstall.sh

Note: The uninstall script renames your existing configuration directory
(/opt/attachmate/pkid/config/ by default) using a name based on the
current date, and time. For example, config.20100101143755. Your local-
store directory and any certificates you have added to this directory
remain unchanged.

Getting Started

In this Chapter

Start and Stop the Server 19

Make an SSH Connection 21

Transfer Files Using sftp 22

Transfer Files Using scp 23

Understanding Secure Shell 24

Start and Stop the Server

The sshd service starts automatically after installation.

A script is installed, which you can use to start, stop, and restart the sshd
service. The name and location of the script varies, depending on your
operating system. When you use the script to start the server, the following
sshd command is invoked.

sshd -oPidFile=sshd_PidFile_keyword_value

Note: Do not use inetd to launch sshd. This is not a supported configuration.
Attempting this configuration in FIPS mode results in extremely long
connection times for each user connection; this is because sshd needs to run
required self tests for each connection.

To run the sshd service directly

1 Log in as root.

2 Include full path information:

/usr/sbin/sshd options

C H A P T E R 2

20 Reflection for Secure IT

To run the server script on Linux

Note: The following commands work on all Linux platforms, although in
some cases the actual script file is installed to a different location.

1 Log in as root.

2 Use the following commands to start, stop, and restart the sshd service:

/etc/init.d/sshd start

/etc/init.d/sshd stop

/etc/init.d/sshd restart

To run the server script or service on Sun Solaris

1 Log in as root.

2 Use the following to start, stop, and restart the sshd service:

• On Sun Solaris 8 and 9 use the following commands to start, stop,
and restart the sshd service:

/etc/init.d/sshd2 start

/etc/init.d/sshd2 stop

/etc/init.d/sshd2 restart

• On Sun Solaris 10 use the following service options to start, stop,
restart, and check the state of the service:

svcadm enable network/ssh

svcadm disable network/ssh

svcadm restart network/ssh

svcs -l network/ssh

To run the server script on HP-UX

1 Log in as root.

2 Use the following commands to start, stop, and restart the sshd service:

/sbin/init.d/sshd2 start

/sbin/init.d/sshd2 stop

/sbin/init.d/sshd2 restart

 Chapter 2 Getting Started 21

To run the server script on IBM AIX

1 Log in as root.

2 Use the following commands to start, stop, and restart the sshd service:

/etc/rc.d/init.d/sshd start

/etc/rc.d/init.d/sshd stop

/etc/rc.d/init.d/sshd restart

Make an SSH Connection

In most cases, you can connect to your host and log in using your password
without making any changes to the default settings. Use ssh to connect to
the remote server. The syntax is:

ssh [options] [user@]hostname[#port] [remote_command [arguments] ...]

When no user is specified, the client connects using your current login
name. When no port is specified, the client uses the default port (which is
22 unless this has been changed in the client configuration file).

When no command is specified, ssh creates a new session on the remote
host. When a command is specified, the command is executed on the host
and then ssh exits. When no user is specified, the current user name is
used.

To open a terminal session to a remote server using defaults

1 Use ssh to connect to the server. For example:

ssh joe@myhost

2 The first time you connect to a host, you see a prompt asking you to
confirm the authenticity of the host. For example:

Host key not found in hostkeys database.

Key fingerprint:

xesem-cyvic-puhef-penyl-dugid-kxpif-tizyh-behen-gymum-fozyb-cuxex

You can get a public key's fingerprint by running

% ssh-keygen -F publickey.pub

on the keyfile.

Are you sure you want to continue connecting (yes/no)?

You can confirm the validity of the host key by contacting the system
administrator for that host. (For the procedure administrators can use
to get this information, see Display the Fingerprint of the Host Public Key
(page 41).)

22 Reflection for Secure IT

3 Enter yes in response to the prompt to accept the connection to this
host. This adds the host key to your known host key list (in
~/.ssh2/hostkeys). Hosts whose key you hold are trusted hosts, and you
will not see the unknown host prompt in subsequent connections.

4 Enter your password to complete the connection.

Note: To simplify initial connections and eliminate the risk created by
allowing users to accept unknown keys, administrators can manually
add the host key to a user-specific or global known hosts list. For details,
see Add a Key to the Client Known Hosts List. (page 39)

Transfer Files Using sftp

Use sftp to transfer files securely between the local computer and a remote
host. You can also perform other file management commands, such as
creating directories and changing file permissions. You can use sftp
interactively or in combination with batch files to automate actions. For
detailed information about command line options, see sftp Command Line
Options (page 172). For an sftp command reference, see Supported sftp
Commands (page 176).

To open an interactive sftp session

1 Connect to a remote host. For example:

sftp joe@myhost.com

Note: You can omit the user name if your name on the Secure Shell
server is the same as your current user name.

After a successful connection is established, the following prompt
appears:

sftp>

 Chapter 2 Getting Started 23

2 Do any of the following:

To Use

View a list of supported
commands

help; for example:

sftp> help

Learn more about
supported commands

help command; for example:

sftp> help put

Transfer and manage
files

Supported commands (page 176); for
example, to transfer the file demo from the
local working directory to the remote
working directory:

sftp> put demo

End the session quit; for example:

sftp> quit

Note: The first time you connect to a host, you may see a prompt asking you
to confirm the authenticity of the host. For more information, see Make a
Client Connection (page 21).

Transfer Files Using scp

Use scp to copy files securely between the local computer and a remote
host, or to transfer files securely between two remote hosts. The basic
syntax is:

scp [[user@]host[#port]:]source [[user@]host[#port]:]destination

Both source and destination file names can include host and user
specification to indicate that files are to be copied to or from that host.

To copy a local file to the default remote directory

 Use the following example to get started:

scp file_src joe@myhost.com:

To copy remote files to the local working directory

 Use the following example to get started:

scp joe@myhost:/demo*.htm .

24 Reflection for Secure IT

For additional examples, see Secure File Copy (page 75). For detailed
information about command line options, see scp Command Line Options
(page 167).

Understanding Secure Shell

This diagram outlines the basic steps involved in creating a Secure Shell
tunnel and using it to transmit data securely.

1. Establish the secure connection.

The client and server negotiate to establish a shared key and cipher to
use for session encryption, and a hash to use for data integrity checking.
For additional information, see Data Protection (page 33).

2. Authenticate the server.

Server authentication enables the client to confirm the identity of the
server. The server has only one chance to authenticate to the client
during the authentication process. If this authentication fails, the
connection fails. For additional information, see Server Authentication
(page 37).

3. Authenticate the client.

Client authentication enables the server to confirm the identity of the
client user. By default, the client is allowed multiple authentication
attempts. The server and client negotiate to agree on one or more
authentication methods. For additional information, see Client
Authentication (page 51).

 Chapter 2 Getting Started 25

4. Send data through the encrypted session.

Once the encrypted session is established, all data exchanged between
the Secure Shell server and client is encrypted. Users now have secure
remote access to the server and can execute commands and transfer
files securely through the secure channel. For additional information,
see Secure File Transfer (page 71).

5. Use port forwarding to secure communications between other clients
and servers.

Port forwarding, also known as tunneling, provides a way to redirect
communications through the Secure Shell channel of an active session.
When port forwarding is configured, all data sent to a specified port is
redirected through the secure channel. For additional information, see
Port Forwarding (page 83).

Configuration Files

In this Chapter

Client Configuration Files 27

Configuration File Format 28

Host Stanzas 28

Command Line Options 29

Server Configuration Files 29

Server Subconfiguration Files 30

Subconfiguration File Samples 31

Client Configuration Files

Reflection for Secure IT configuration files control connections made using
ssh. The settings in the client configuration files also control scp and sftp
connections. The default, global, configuration file is:

/etc/ssh2/ssh2_config

This file is installed when you install Reflection for Secure IT. The installed
file contains commented out lines showing default values for the client
settings. A duplicate copy of this file is installed to
/etc/ssh2/ssh2_config.example.

In addition, you can create configuration files for individual users in:

~/.ssh2/ssh2_config

The ssh client processes settings cumulatively in the following order. If a
setting is configured in more than one place, the last value processed
overrides any previous value of the same setting.

1. System-wide configuration file: /etc/ssh2/ssh2_config

2. User-specific configuration file: ~/.ssh2/ssh2_config

3. Optional user configuration file specified using the -F switch on the ssh
command line.

4. Command line options used with ssh, scp, and sftp.

For detailed information about client configuration file keywords, see Client
Configuration Keywords (page 118).

C H A P T E R 3

28 Reflection for Secure IT

Configuration File Format

The configuration file consists of keywords followed by values. You can use
optional host stanzas to configure settings specific to individual hosts or
groups of hosts. If a setting is configured in more than one place in the file,
the value configured further down the list overrides the previous value.

Any line starting with a number sign (#) is a comment. Any empty line is
ignored.

Regular Expressions

Regular expressions are evaluated using POSIX-Extended syntax. For
details about regular expression rules, see:

http://www.opengroup.org/onlinepubs/7990989775/xbd/re.html

Keyword Syntax

Every keyword requires a value. The value can be separated from the
keyword by spaces, or optional spaces and exactly one "=". Enclose the value
in quotation marks (single or double) if it includes spaces. For example:

key value

key=value

key="value with spaces"

key=value1, value2

Keywords are not case sensitive.

Host Stanzas

Host stanzas are supported in client configuration files. Use host stanzas to
apply different settings to different hosts. To create a host stanza, use a
regular expression that identifies an individual host or a group of hosts.
Place this at the beginning of a new line, followed by a colon (:). This line
cannot contain white space. When you initiate a connection, the client
matches host stanza expressions against the host name you specify for that
connection. If the host stanza expression matches your specified host, values
within that stanza are applied to the connection. The client continues to
search for matching host stanzas and applies any relevant settings until the
end of the file is reached. Because the last value of a keyword overrides any
previous value for the same keyword, you need to place global settings above
host-specific settings. Settings outside of any stanza apply to all
connections, but can be superseded by subsequent settings placed within a
stanza.

You can configure global settings by creating a stanza labeled with ".*:"
Settings in this stanza apply to any host you specify on the command line.

 Chapter 3 Configuration Files 29

Note: Global settings configured in this stanza do not apply to a connection
in which no host is specified. To make a successful connection without
specifying a host, you must use a configuration file in which the Host
keyword appears outside of a host stanza.

The following example sets the default user name to 'joe', and changes the
user name to 'guy' for connections to samplehost.

 .*:

 user=joe

 samplehost:

 user=guy

Command Line Options

You can configure client and server connections using command-line
options in addition to, or instead of, using configuration files. Command line
options override configuration file settings. Any option that can be
configured in a configuration file, can also be set on the command line using
the -o option. Syntax alternatives are shown below. Use quotation marks to
contain expressions that include spaces.

-o key1=value

-o key1="sample value"

-o "key1 value"

To configure multiple options, use multiple -o switches.

-o key1=value -o key2=value

The following command lines show two equivalent ways to specify an
identification file.

ssh -i testfile myname@myserver

ssh -o IdentificationFile=testfile myname@myserver

Server Configuration Files

Reflection for Secure IT server configuration files contain configuration
settings for the sshd server. The default global configuration file is
/etc/ssh2/sshd2_config. You can specify an alternate file using the -f option
on the sshd command line. You can also create and use optional
subconfiguration files for specific client hosts or users.

A sample configuration file is installed to /etc/ssh2/sshd2_config. This file
includes commented lines that show all available settings and their default
values. A duplicate copy of this file is installed to
/etc/ssh2/sshd2_config.example.

The basic format of the server configuration file is the same as the client
configuration file. For details, see Configuration File Format (page 28).

30 Reflection for Secure IT

Changes you make to the main server configuration file affect new
connections immediately; you do not need to restart the server. Existing
connections remain active using their original settings; subsequent
connections use the new settings.

Note: Changes to Port, ListenAddress and FipsMode require a restart.

The server processes settings cumulatively in the following order. If a
setting is configured in more than one place, the last value processed
overrides any previous value of the same setting.

1. The global configuration file, or an alternate file specified on the sshd
command line using -f.

2. Any host-specific subconfiguration file(s) that you have created and
identified using the HostSpecificConfig keyword.

3. Any user-specific subconfiguration file(s) that you have created and
identified using the UserSpecificConfig keyword.

4. Command line options used with sshd.

Server Subconfiguration Files

You can create and use optional subconfiguration files to configure settings
that you want to apply to a subset of users or client hosts. Subconfiguration
files are read by the process forked for each new connection. These files are
read at runtime; any changes you make affect all subsequent connections.

User-specific Subconfiguration Files

Use the UserSpecificConfig keyword to configure user-specific
subconfiguration files. The syntax for this keyword is:

UserSpecificConfig user_expression subconfig_file

If the user expression (page 97) matches the user attempting a connection,
the server uses the specified subconfiguration file. An example file is
installed to:

/etc/ssh2/subconfig/user.example

The user.example file includes a list of keywords that are supported in user-
specific subconfiguration files.

Security Note: If you configure a user-specific list for
RequiredAuthentications that is different from the global allowed or
required list, a malicious user attempting to authenticate can compare the
client/server authentication negotiations of various accounts and use
differences in the list of allowed authentications to determine that an
account is valid on this system and different from other accounts on the
system.

 Chapter 3 Configuration Files 31

Host-specific Subconfiguration Files

Use the HostSpecificConfig keyword to configure settings to apply to a
subset of client hosts. The syntax for this keyword is:

HostSpecificConfig host_expression subconfig_file

If the host expression (page 98) matches the client host, the server uses the
specified subconfiguration file. An example file is installed to:

/etc/ssh2/subconfig/host.example

The host.example file includes a list of keywords that are supported in host-
specific subconfiguration files.

Subconfiguration File Samples

The following sample files provide an example of how subconfiguration files
might be used to apply connection settings to particular hosts and users. In
the sample server configuration file, a host subconfiguration file is specified
using the HostSpecificConfig keyword. In this example, settings in the host
subconfiguration file apply to all users connecting from the acme.com
domain. The host subconfiguration file uses the UserSpecificConfig keyword
to specify a user subconfiguration file, whose settings apply only to
connections from the user named joe, connecting from the acme.com
domain.

Server Configuration File

Sample content for /etc/ssh2/sshd2_config.

Port=2222

RequireReverseMapping=yes

ResolveClientHostname=yes

#Specify a host-specific file for the users from acme.com

HostSpecificConfig=.*acme\.com /root/hostsubconfig

#Limit forwarding to user joe and constrain his forwarding rights

ForwardACL=allow remote joe .* peak.acme.com

Host Subconfiguration File

Sample content for /root/hostsubconfig.

AllowedAuthentications=publickey,password

Ciphers=aes128-cbc

#Allow sftp access only

SessionRestricted=subsystem

#Specify a user-specific file for user joe

UserSpecificConfig=joe /root/joesubconfig

32 Reflection for Secure IT

User Subconfiguration File

Sample content for /root/joesubconfig.

RequiredAuthentications=publickey

#Allow both shell and sftp access

SessionRestricted=shell,subsystem

Data Protection

In this Chapter

Encryption 33

Data Integrity 34

Configuring Ciphers and MACs 34

FIPS Mode 35

Encryption

Encryption protects the confidentiality of data in transit. This protection is
accomplished by encrypting the data before it is sent using a secret key and
cipher. The received data must be decrypted using the same key and cipher.
The cipher used for a given session is the cipher highest in the client's order
of preference that is also supported by the server.

Reflection for Secure IT supports the following data encryption standards:

 Arcfour, Arcfour128, and Arcfour256 (stream mode)

 TripleDES (168-bit) CBC mode

 Cast (128-bit) CBC mode

 Blowfish (128-bit) CBC mode

 AES, also known as Rijndael (128-, 192-, or 256-bit) CBC mode and CTR
mode

C H A P T E R 4

34 Reflection for Secure IT

Data Integrity

Data integrity ensures that data is not altered in transit.

Secure Shell connections use MACs (message authentication codes) to
ensure data integrity. The client and server independently compute a hash
for each packet of transferred data. If the message has changed in transit,
the hash values are different and the packet is rejected. The MAC used for
a given session is the MAC highest in the client's order of preference that is
also supported by the server.

Reflection for Secure IT supports the following MAC standards:

 hmac-sha1

 hmac-md5

 hmac-sha1-96

 hmac-md5-96

 hmac-ripemd-160

 hmac-sha256

 hmac-sha512

Configuring Ciphers and MACs

The client and server support the same keywords for configuring ciphers
and MACs. Configure client keywords in ssh2_config. Configure server
keywords in sshd2_config.

Keyword Values

Ciphers Allowed values are 'aes128-ctr', 'aes128-cbc', 'aes192-ctr',
'aes192-cbc', 'aes256-ctr', 'aes256-cbc', 'blowfish-cbc',
'arcfour', 'arcfour128', 'arcfour256', 'cast128-cbc', and '3des-
cbc'. You can also set this value to 'none'. When 'none' is
the agreed on cipher, data is not encrypted. Note that this
method provides no confidentiality protection, and is not
recommended.

The following values are provided for convenience: 'aes' (all
supported aes ciphers), 'blowfish' (equivalent to 'blowfish-
cbc'), 'cast' (equivalent to 'cast128-cbc'), '3des' (equivalent
to '3des-cbc'), 'Any' or 'AnyStd' (all available ciphers plus
'none'), and 'AnyCipher' or 'AnyStdCipher' (all available
ciphers).

The default is 'AnyStdCipher'.

 Chapter 4 Data Protection 35

MACs

Allowed values are 'hmac-sha1', 'hmac-sha1-96', 'hmac-
md5', 'hmac-md5-96', 'hmac-ripemd160', 'hmac-sha256',
and 'hmac-sha512'. Use 'AnyMac' to support all of these.
Use 'AnyStdMac' to support 'hmac-sha1', 'hmac-sha1-96',
'hmac-md5', and 'hmac-md5-96'. Additional options are
'none', 'any' (equivalent to AnyMac plus 'none'), and
'AnyStd' (equivalent to 'AnyStdMac' plus 'none'). Multiple
MACs can also be specified as a comma-separated list.
When 'none' is the agreed on MAC, no message
authentication code is used. Because this provides no data
integrity protection, options that include 'none' are not
recommended.

Ciphers can also be defined on the ssh, scp, and sftp command line using -c.
For example:

ssh -c blowfish-cbc joe@remote.com

MACs can also be defined on the ssh and sftp command line using -m. For
example:

sftp -m hmac-md5 joe@remote.com

FIPS Mode

The United States Government's Federal Information Processing Standard
(FIPS) 140-2 specifies security requirements for cryptographic modules.
Cryptographic products are validated against a specific set of requirements
and tested in 11 categories by independent, U.S. Government-certified
testing laboratories. This validation is then submitted to the National
Institute of Standards and Technology (NIST), which reviews the validation
and issues a certificate. In addition, cryptographic algorithms may also be
validated and certified based on other FIPS specifications. The list of
certified products and the vendor's stated security policy (the definition of
what the module has been certified to do) can be found at:
http://csrc.nist.gov/cryptval/vallists.htm.

To configure Reflection for Secure IT to run in FIPS mode, use the
FipsMode keyword. This keyword is supported for both the client and
server.

Note: If you change the FipsMode setting on the server, you need to restart
the server for the change to take full effect. A SIGHUP signal puts new
sessions into FIPS-mode, but does not affect existing connections.)

36 Reflection for Secure IT

Enabling FIPS Mode has the following effects:

 All connections must be made using algorithms that meet FIPS 140-2
standards. Algorithms that don't meet these standards are not available,
except where these algorithms are allowed by NIST for legacy
compatibility.

 Minimum public key sizes for both user and host keys are reset from the
default of 512 bits up to 1024 bits.

 Because Reflection for Secure IT cannot verify the FIPS status of
SecurID, GSSAPI, and RADIUS binaries, these authentication methods
need to be manually disabled by the system administrator if they are not
FIPS validated. To ensure that you have disabled all PAM
authentication methods that are not FIPS validated, disable PAM
(UsePAM=no) in the server configuration file (/etc/ssh2/sshd2_config).

Server Authentication

In this Chapter

Public Key Authentication Overview 37

Create a New Host Key 39

Add a Key to the Client Known Hosts List 39

Display the Fingerprint of the Host Public Key 41

Server Certificate Authentication Overview 41

Obtain Authentication Certificates 42

Configure Server Certificate Authentication 44

Kerberos (GSSAPI) Authentication 47

Kerberos System Requirements 47

Configure Kerberos Server and Client Authentication 48

Public Key Authentication Overview

Reflection for Secure IT uses public key host authentication by default. The
server automatically generates a new host key (or migrates an existing host
key) during installation. The default key is an RSA 2048-bit key.

Public key cryptography uses a mathematical algorithm with a
public/private key pair to encrypt and decrypt data. One of the keys is a
public key, which can be freely distributed to communicating parties, and
the other is a private key, which should be kept secure by the owner of the
key. Data encrypted with the private key can be decrypted only with the
public key; and data encrypted with the public key can be decrypted only
with the private key.

When keys are used for authentication, the party being authenticated
creates a digital signature using the private key of a public/private key pair.
The recipient must use the corresponding public key to verify the
authenticity of the digital signature. This means that the recipient must
have a copy of the other party's public key and trust in the authenticity of
that key.

C H A P T E R 5

38 Reflection for Secure IT

How it Works

When public key authentication is used for host authentication, the
following sequence of events takes place.

1. The Secure Shell client initiates a connection.

2. The server sends its public key to the client.

3. The client looks for this key in its trusted host key store.

If the client This occurs

Finds the host key, and the
client copy matches the key
sent by the server

Authentication proceeds to the next step.

Does not find the host key The client displays a message that the host is
unknown and provides a fingerprint of the
host key. If the client is configured to allow the
user to accept unknown keys (the default), the
user can accept the key, and authentication
proceeds to the next step.

If strict host key checking is enforced, the
client ends the connection.

Finds a host key, and the client
copy doesn't match the key sent
by the server

The client displays a warning that the key
doesn't match the existing key and displays
the fingerprint of the key sent by the server. If
the client is configured to allow the user to
accept unknown keys (the default), the user
can accept the new key.

If strict host key checking is enforced, the
client ends the connection.

4. To confirm that the server actually holds the private key that
corresponds to the received public key, the client sends a challenge (an
arbitrary message) to the server and computes a hash (page 220) based
on this message text.

5. The server creates a digital signature based on the challenge message.
To do this, the server independently computes the message hash, and
then encrypts the computed hash using its private key. The server
attaches this digital signature to the original challenge and returns this
signed message to the client.

6. The client decrypts the signature using the public key and compares the
hash with its own computed hash. If the values match, host
authentication is successful.

 Chapter 5 Server Authentication 39

Create a New Host Key

In most cases, you do not need to make any changes to the default server
host key. The server installation package checks to see if an existing host
key pair is already present. If no host key is found, the package creates a
new host key pair and the server uses this pair for host authentication. If a
host key already exists in /etc/ssh2, Reflection for Secure IT uses this key.
If an OpenSSH host key is found in /etc/ssh, Reflection for Secure IT
migrates the key to the correct format and location and uses the migrated
key.

To create and use a new host key

1 Log in as root.

2 Terminate any instances of sshd using the server script. (For additional
information, see Start and Stop the Server (page 19).)

3 Use ssh-keygen to generate a new host key. For example:

ssh-keygen -P /etc/ssh2/hostkey2

Note: The -P option creates a key with no passphrase protection, which
is required for host keys.

4 (Optional) If you use a new host key name and/or location, edit the
server configuration file (/etc/ssh2/sshd2_config). Use the HostKeyFile
keyword to specify the new name and location:

HostKeyFile=/etc/ssh2/hostkey2

This step is not required if you continue to use the default host key
name (/etc/ssh2/hostkey).

5 Restart the service.

Add a Key to the Client Known Hosts List

By default, the first time a client attempts to connect to the server, the user
sees a message indicating that this is an unknown host. This message
includes a fingerprint that identifies the host key. To be sure that this is
actually the correct host key, the user should contact the host system
administrator who can confirm that this is the correct fingerprint. Without
this verification, the client is at risk of a "man-in-the-middle" attack. To
simplify initial connections and eliminate the risk created by allowing users
to accept unknown keys, you can manually add the host key to the client
known hosts list.

40 Reflection for Secure IT

To add the server key to the client known hosts list

Note: You will need a correctly named copy of the server's public host key.
Client copies of known host keys use the following file name format:

key_port_host,IP.pub

Where port is the port used for the ssh connection, host is the host name,
and IP is the host IP address. (Earlier versions used key_port_host.pub, and
this format is still supported.)

An easy way to obtain a correctly named key is to make an initial
connection to the server and allow the client to accept and name the host
key. You can then distribute this copy of the host key. This is the technique
used in the following procedure.

1 From your server, use ssh-keygen to display the fingerprint of the
server's public host key:

ssh-keygen -F /etc/ssh2/hostkey.pub

2 From a client that has not yet connected to this host, initiate a
connection to your server:

ssh myname@myserver

You'll see a message saying that the host key is not in the host key
database.

3 Confirm that the host key fingerprint in this message matches the
actual host key fingerprint, and enter 'yes' to accept the host key.

You will see a message identifying the name and location of the host key
you just accepted. For example:

Host key saved to /home/joe/.ssh2/hostkeys/key_22_myserver,10.10.1.123.pub

4 Copy this key to the known host list of your client computers:

• To add this host key for all users of the client computer, copy the
host public key file to /etc/ssh2/hostkeys.

-or-

• To add this host key for an individual user, copy the host public key
file to ~/.ssh2/hostkeys.

5 (Optional) Enable StrictHostKeyChecking so that users cannot accept
unknown host keys. You can add the following line to a system-wide
configuration file (/etc/ssh2/ssh2_config), or a user-specific
configuration file (~/.ssh2/ssh2_config).

StrictHostKeyChecking=yes

 Chapter 5 Server Authentication 41

Display the Fingerprint of the Host Public Key

The first time a client user connects to the server, he or she sees a prompt
that includes the fingerprint of the server's public host key. The server
administrator can confirm the validity of the key by displaying the host key
fingerprint on the server.

To display the fingerprint that identifies the server's public host key

1 Log in to the server.

2 Use ssh-keygen to display the host key fingerprint:

ssh-keygen -F /etc/ssh2/hostkey.pub

Server Certificate Authentication Overview

Certificate authentication is a form of public key authentication that solves
some of the problems presented by public key authentication. With public
key host authentication, the system administrator must either add the host
public key for every server to each client's list of known hosts, or count on
client users to confirm the host identity correctly when they connect to an
unknown host. Certificate authentication avoids this problem by using a
trusted third party, called the certification authority (CA), to verify the
validity of information coming from the host. With certificates, you can
configure authentication using a single trust anchor instead of multiple
unique server public keys.

Reflection PKI Services Manager supports central management of PKI
settings. You can install and configure a single instance of PKI Services
Manager to provide certificate validation services for all supported
Attachmate products.

Requirements

Requirement Function

Reflection PKI Services
Manager must be installed and
correctly configured.

PKI Services Manager validates the certificate
and uses a map file to determine which servers
can authenticate with a valid certificate. You
need to configure at least one trust anchor and
one mapping rule for certificate validation to
succeed. You may also need to configure access
to intermediate certificates and to certificate
revocation information.

A certificate signed by a CA and
the associated private key must
be installed on the server.

The server sends this certificate to the client to
authenticate the server.

42 Reflection for Secure IT

Requirement Function

The Reflection for Secure IT
UNIX client must have a copy
of the PKI Services Manager
public key and be configured to
connect to PKI Services
Manager.

The client communicates with PKI Services
Manager to confirm the validity of the server
certificate.

How it Works

1. The Reflection for Secure IT server presents a certificate to the client
for server authentication.

2. The Reflection for Secure IT client connects to Reflection PKI Services
Manager. (Set the server name and port for this connection using the
Reflection for Secure IT client PkidAddress keyword.)

3. Reflection for Secure IT verifies the identity of PKI Services Manager
using an installed public key. (Set the key name and location using the
Reflection for Secure IT client PkidPublicKey keyword.)

4. Reflection for Secure IT sends the certificate and the server name to
PKI Services Manager.

5. PKI Services Manager determines if the certificate is valid and whether
the server is allowed to authenticate with this certificate based on the
rules the PKI Services Manager administrator has configured in the
PKI Services Manager map file
(/opt/attachmate/pkid/config/pki_mapfile by default). This information
is returned to Reflection for Secure IT.

6. If the certificate is valid and the server presenting it is an allowed
identity for this certificate, server authentication is successful.

Obtain Authentication Certificates

Before you can configure authentication using certificates, you need a
private key and an associated certificate signed by a trusted CA. For server
authentication, these need to be installed and configured on the server. For
user authentication, these need to be installed and configured on the client.

There are several ways to obtain the key and associated certificate. The
approach you take depends on whether you want to obtain a certificate for
an existing key, generate a new key and obtain a certificate for it, or obtain
both the private key and the certificate from the CA.

To obtain a certificate for an existing private key

1 Use ssh-certtool to create a certificate request for your private key. For
example:

ssh-certtool -p privatekey pkcs10 "CN=acme,OU=demo,C=US"

 Chapter 5 Server Authentication 43

This creates a request file in PKCS#10 format. The default filename is
output.pkcs10.

2 Submit the certificate request to the CA.

The CA returns a digitally signed certificate.

3 If the returned certificate is packaged as a PKCS#12 (*.pfx or *.p12) or
PKCS#7 file, you can use ssh-keygen to extract the certificate from the
returned package.

Use -k to extract the contents of a PKCS#12 file:

ssh-keygen -k package.pfx

Use -7 to extract the contents of a PKCS#7 file:

ssh-keygen -7 pkcs7file

To generate a new private key and obtain a certificate

1 Use ssh-certtool to create a private key and a certificate request for this
private key. For example to generate an RSA key:

ssh-certtool -n rsa pkcs10 "CN=acme,OU=demo,C=US"

This creates a request file in PKCS#10 format. The default filename is
output.pkcs10.

2 Submit the certificate request to the CA.

The CA returns a digitally signed certificate.

3 If the returned certificate is packaged as a PKCS#12 (*.pfx or *.p12) or
PKCS#7 file, you can use ssh-keygen to extract the certificate from the
returned package.

Use -k to extract the contents of a PKCS#12 file:

ssh-keygen -k package.pfx

Use -7 to extract the contents of a PKCS#7 file:

ssh-keygen -7 pkcs7file

To obtain both the private key and certificate from a CA

1 Submit your request to the CA.

The CA returns a PKCS#12 (*.pfx or *.p12) that contains both the
private key and a digitally signed certificate.

2 Use ssh-keygen with the -k option to extract the key and the certificate
from the returned package. For example:

ssh-keygen -k package.pfx

44 Reflection for Secure IT

Configure Server Certificate Authentication

Before you begin, review the requirements described in the Server Certificate
Authentication Overview (page 41) topic.

To configure server authentication using certificates, you need to install and
configure Reflection PKI Services Manager and configure your server and
client. Use the following procedures to get started. Many additional
variations are possible. For more information, see the Reflection PKI
Services Manager User Guide, which is available from
http://support.attachmate.com/manuals/pki.html.

You can install and configure a single instance of PKI Services Manager to
support certificate authentication requests from multiple Reflection for
Secure IT clients and/or servers. However, because Reflection for Secure IT
settings allow only one entry for the PKI Services Manager address and
port, this configuration creates a potential single point of failure. If PKI
Services Manager is unreachable or the server is not running, all
authentication attempts using certificates will fail. To provide load
balancing and failover, you can define a round-robin DNS entry for the PKI
Services Manager host name or place the PKI Services Manager host
behind a load balancing server.

Note: Paths shown here are based on the default installation options.

To install and configure PKI Services Manager

1 Log in as root on the Reflection PKI Services Manager server.

2 Install Reflection PKI Services Manager (page 17).

3 Put a copy of the certificate you want to designate as a trust anchor into
your local store. The default PKI Services Manager store is in the
following location:

/opt/attachmate/pkid/local-store

4 Open the PKI Services Manager configuration file in a text editor. The
default name and location is:

/opt/attachmate/pkid/config/pki_config

5 Use the TrustAnchor keyword to identify your trust anchor. For
example:

TrustAnchor = trustedca.crt

-or-

TrustAnchor = CN=SecureCA,O=Acme,C=US

Note: To configure multiple trust anchors, add additional TrustAnchor
lines.

6 Configure certificate revocation checking. For example:

 Chapter 5 Server Authentication 45

To Sample Configuration

Use CRLs stored on
an LDAP server.

RevocationCheckOrder = crlserver
CRLServers=ldap://crlserver

Use an OCSP
responder.

RevocationCheckOrder = ocsp
OCSPResponders = http://ocspresponder

Note: By default PKI Services Manager looks for CRLs in the local
store. If you use this configuration, you need to copy the CRLs to your
local store.

7 If intermediate certificates are required by the chain of trust in your
certificates, configure access to these certificates. For example:

To Sample Configuration

Use intermediate
certificates you have
added to your local
store.

CertSearchOrder=local

Use certificates
stored on an LDAP
server.

CertSearchOrder=certserver
CertServers=ldap://ldapserver

8 Save your changes to the configuration file.

9 Open the PKI Services Manager map file (page 203) in a text editor. The
default name and location is:

/opt/attachmate/pkid/config/pki_mapfile

10 Create a host RuleType stanza and add one or more rules that define
which hosts can authenticate with a valid certificate. For example:

RuleType = host
 {myhost.com} Subject Contains "myhost"

For more sample rules, see Sample PKI Services Manager Mapping Rules
(page 210).

Note: After a certificate is determined to be valid, rules are processed in
order (based on rule type then sequence). If the certificate meets the
requirements defined in the conditional expression (or if the rule has no
condition), the allowed identities specified in that rule are allowed to
authenticate. No additional rules are applied after the first match.This
means that if you create a rule with no conditions, all allowed identities
must be included in that rule.

11 Test for valid PKI Services Manager configuration:

/usr/local/sbin/pkid -k

No errors. Configuration is valid:

12 Restart Reflection PKI Services Manager.

46 Reflection for Secure IT

/usr/local/sbin/pkid restart

To configure the Reflection for Secure IT server

1 Install the server certificate and associated private key (page 42). For
example:

/etc/ssh2/server.key

/etc/ssh2/server.crt

2 Set permissions on the server key for user-only read-only access:

chmod 400 server.key

3 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor.

4 Configure the following keywords:

HostCertificateFile=/etc/ssh2/server.crt

HostKeyFile=/etc/ssh2/server.key

5 Restart the server (page 19).

To configure the Reflection for Secure IT client

1 If PKI Services Manager is not installed on the same host as the
Reflection for Secure IT client, copy the PKI Services Manager public
key to the Reflection for Secure IT client. The key location on PKI
Services Manager is:

/opt/attachmate/pkid/config/pki_key.pub

Copy this to any location on the Reflection for Secure IT client. For
example:

/etc/ssh2/pki_key.pub

2 Open the client configuration file (/etc/ssh2/ssh2_config) in a text
editor.

3 Edit PkidPublicKey to specify the location in which you placed the PKI
Services Manager public key. For example:

PkidPublicKey=/etc/ssh2/pki_key.pub

4 Edit PkidAddress to specify the PKI Services Manager host and port.
For example:

PkidAddress=pkiserver.acme.com:18081

Note: If you specify a host and omit the port, the default PKI Services
Manager port (18081) is used.

5 Confirm that HostKeyAlgorithms is configured to prefer X.509
certificates over host keys. This is the default.

 Chapter 5 Server Authentication 47

HostKeyAlgorithms=x509v3-sign-rsa,x509v3-sign-dss,ssh-rsa,ssh-dss

Kerberos (GSSAPI) Authentication

Kerberos is a security protocol that provides an alternate mechanism for
both client and server authentication. Kerberos authentication relies on a
trusted third party called the KDC (Key Distribution Center). The Secure
Shell protocol supports Kerberos authentication via GSSAPI (Generic
Security Services Application Programming Interface).

Advantages of using Kerberos authentication include:

 Using a trusted third party eliminates the key management tasks you
encounter when you use public key authentication.

 When Kerberos is used for server authentication, no host key is
required. This means that client users won't need to respond to an
unknown host prompt.

Server Authentication using GSSAPI

By default, Secure Shell connections are established using this sequence of
events:

1. Key exchange — the client and server negotiate a shared secret key,
cipher, and hash for the session.

2. Server authentication — by default, the server presents a host key for
this purpose.

3. Client authentication.

When GSSAPI is used for server authentication, the Kerberos KDC
authenticates the server during the initial key exchange. No subsequent
server authentication is needed, and the server never sends a host key to
the client.

Client Authentication using GSSAPI

After a user has authenticated to the KDC, that user holds Kerberos
credentials that can be used by other kerberized applications. When you
configure Reflection for Secure IT to support GSSAPI, the server uses
Kerberos credentials to authenticate client users. This means that users
who have authenticated to the KDC need no additional authentication to
connect to the server.

Kerberos System Requirements

Reflection for Secure IT supports the following Kerberos implementations:

 MIT Kerberos V5, release 1.5.4 or later

48 Reflection for Secure IT

 Sun Solaris native Kerberos libraries

Reflection for Secure IT uses the following Kerberos libraries. You may
need to configure the keywords shown here to specify the fully-qualified
path to these libraries on your system. (The default values of these settings
depend on your operating system.)

Library Keyword Used by

libgssapi_krb5.so LibGssKrb5 Client (ssh2_config) and server
(sshd2_config)

libkrb5.so LibKrb5 Server only (sshd2_config)

Configure Kerberos Server and Client
Authentication

Kerberos can be used for mutual authentication (both client and server), or
for client authentication only.

 When the authentication method is gssapi-keyex, both server and client
authentication occur during the key exchange portion of the connection
negotiations. If this authentication fails, the connection fails; no
subsequent authentication methods are attempted.

 When the authentication method is gssapi-with-mic, Kerberos is not used
for server authentication. Client authentication using Kerberos is
attempted after successful server authentication. If Kerberos
authentication fails, other allowed authentication methods are tried.

Here's a quick summary of the important steps. The details are explained in
the procedures that follow.

1. Configure connections to the KDC.

• Add the host principal and install a keytab file on the Secure Shell
server host.

• Add client user principals.

2. Configure the AllowedAuthentications in the server configuration file
(as needed).

3. Configure AllowedAuthentications and GSSAPIDelegateCredentials in
the client configuration file (as needed).

4. Authenticate the client user to the KDC using kinit before you make a
Secure Shell connection.

To configure connections to the KDC

1 Log in to your Secure Shell server.

 Chapter 5 Server Authentication 49

2 Confirm that the server is configured to authenticate to your Kerberos
realm. If not, install a correctly configured krb5.conf file.

3 Authenticate to your Kerberos realm using a principal with
administrative rights:

kinit root/admin

4 Launch the Kerberos administration utility:

/usr/krb5/sbin/kadmin

5 Add a host principal for this server. For example, to add the host
myhost.sample.com:

addprinc -randkey host/myhost.sample.com

6 Extract a keytab file for this server:

ktadd host/myhost.sample.com

7 Add a principal for each client user. For example, to add Joe:

addprinc joe

To configure Secure Shell settings on the server

1 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor.

2 Edit the AllowedAuthentications keyword:

To Use

Authenticate both the server
and the client using Kerberos

AllowedAuthentications=gssapi-keyex

Authenticate only the client
using Kerberos

AllowedAuthentications=gssapi-with-mic

To configure the client

1 Open the client configuration file (/etc/ssh2/ssh2_config) in a text
editor.

2 Edit the AllowedAuthentications keyword:

To Use

Authenticate both the server
and the client using Kerberos

AllowedAuthentications=gssapi-keyex

Authenticate only the client
using Kerberos

AllowedAuthentications=gssapi-with-mic

3 (Optional) Edit the GSSAPIDelegateCredentials keyword if you want to
enable ticket forwarding:

GSSAPIDelegateCredentials=Yes

50 Reflection for Secure IT

To obtain Kerberos credentials

Before you can connect to the Secure Shell server, you need to obtain your
Kerberos credentials.

1 Use kinit to authenticate.

kinit -f

Note: The -f option is not required. This option requests a forwardable
ticket. If ticket forwarding has been enabled (using
GSSAPIDelegateCredentials) this ticket is forwarded to the server. This
means that you can access other kerberized applications without having
to obtain additional Kerberos credentials.

2 Enter your password for the Kerberos KDC.

User Authentication

In this Chapter

Password and Keyboard Interactive Authentication 52

Public Key Authentication 54

Certificate Authentication for Users 57

Pluggable Authentication Modules (PAM) 62

RADIUS Authentication 65

RSA SecurID Authentication 67

Configure Account Management on HP-UX Trusted Systems 69

Several methods of client authentication are available, and both the client
and server can be configured to determine which method — or methods —
are used. The server can be configured to allow, require, or deny client
authentication methods. During Secure Shell connection negotiations, the
server presents a list of allowed and required methods from which the client
and server negotiate one or more authentication methods.

Authentication attempts follow the order of preference set by the client.
The connection uses the first authentication technique highest in the client
order of preference that is also allowed by the server. If the server is
configured to require more than one method, multiple authentication
methods are needed to establish a connection.

C H A P T E R 6

52 Reflection for Secure IT

Password and Keyboard Interactive Authentication

Reflection for Secure IT server supports both password and keyboard
interactive authentication by default.

Authentication method Description

Password Prompts the client user for the login password
for that user on the Secure Shell server host.

The password is sent to the host through the
encrypted channel.

Keyboard interactive Supports any procedure in which authentication
data is entered using the keyboard, including
simple password authentication, thereby enabling
the Secure Shell client to support a range of
authentication mechanisms, such as RSA
SecurID tokens or RADIUS servers.

A client administrator could, for example,
configure keyboard interactive authentication to
handle situations in which multiple prompts are
required, such as for password updates.

Keyboard data is sent to the host through the
encrypted channel.

Configure Password Authentication

Password authentication is supported by default; no configuration is
required on either the server or the client to use this authentication
method. Use these procedures if you want to modify the default server or
client configuration.

Note: Password authentication can be also done using the keyboard-
interactive method, which is the preferred method.

To configure password authentication on the client

1 Open the client configuration file (/etc/ssh2/ssh2_config) in a text
editor.

2 Edit the AllowedAuthentications keyword.

To configure password authentication on the server

1 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor.

2 Edit AllowedAuthentications or RequiredAuthentications.

 Chapter 6 User Authentication 53

3 (Optional) Use PasswordGuesses to change the maximum number of
attempts a user is allowed for password authentication. (The default is
3.) For example:

PasswordGuesses=5

Configure Keyboard Interactive Authentication

Keyboard-interactive authentication is supported by default; no
configuration is required on either the server or the client to use this
authentication method.

Follow these procedures if you want to modify the default server or client
configuration.

To configure keyboard interactive authentication on the client

1 Open the client configuration file (/etc/ssh2/ssh2_config) in a text
editor.

2 Edit the AllowedAuthentications keyword. For example, to require
keyboard interactive authentication:

AllowedAuthentications=keyboard-interactive

To configure keyboard interactive authentication on the server

1 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor.

2 Edit AllowedAuthentications or RequiredAuthentications. For example:

To Do This

Support keyboard-
interactive
authentication, but not
traditional password
authentication

Remove password from the allowed list.
For example:

AllowedAuthentications=gssapi-
keyex,gssapi-with-mic,publickey,keyboard-
interactive

Require keyboard
interactive
authentication

Enter the following command:

RequiredAuthentications=keyboard-
interactive

3 (Optional) Use AuthKbdInt.Retries to change the maximum number of
attempts a user is allowed for keyboard-interactive authentication (the
default is 3). For example:

AuthKbdInt.Retries=5

4 (Optional) Configure account management using AccountManagement.
For details, see Pluggable Authentication Modules (PAM) (page 62).

54 Reflection for Secure IT

Public Key Authentication

Public key authentication relies upon public/private key pairs. To configure
public key authentication, each client user needs to create a key pair and
upload the public key to the server. If the key is protected by a passphrase,
the client user is prompted to enter that passphrase to complete the
connection using public key authentication.

Configure Public Key User Authentication

Public key authentication requires both client and server configuration.
Here's a quick summary of the important steps. The details are explained in
the procedures that follow.

1. Create a key pair on the client.

2. Add a line to the client identification file (~/.ssh2/identification) that
identifies the private key.

3. Copy the public key to the user's directory on the server (~/.ssh2).

4. Add a line to the user's authorization file (~/.ssh2/authorization) on the
server that identifies the public key.

Note: To help ensure secure authentication, and prevent tampering,
information leakage and spoofing, files and directories used by the client
and server must be configured with correct permissions and ownership.
If these conditions aren't met, Secure Shell connections and public key
authentication may fail. For details, see File and Directory Permissions
(page 151).

To configure public key authentication on the client

1 (Optional) Modify the client's AllowedAuthentications setting.

Because public key authentication is allowed by default, this step is
required only if you want to change this default. To modify the
supported authentications, open the client configuration file
(/etc/ssh2/ssh2_config). For example, to require public key
authentication use:

AllowedAuthentications=publickey

2 Generate a public/private key pair using the ssh-keygen utility.

For example, the following command creates a default (2048-bit RSA)
key pair (mykey and mykey.pub) in the current working directory. You are
prompted to enter a passphrase during the key creation process. If you
provide a passphrase, you will need to use it whenever you authenticate
using this key.

ssh-keygen mykey

 Chapter 6 User Authentication 55

The next example uses -P to create a key that is not passphrase-
protected. This option is less secure, but may be desirable for use with
scripts and batch files. The -t specifies key type (DSA in this example).
Because no key name is specified, the key is created using a default
name and location, ($HOME/.ssh2/id_dsa_1024_myhost_a for this example,
where myhost is the system's host name as returned by the hostname
command).

ssh-keygen -P -t dsa

3 Create (or edit) the client identification file. The default name and
location for this file is ~/.ssh2/identification. Configure this file for
user-only write access (600 is recommended).

4 In the identification file, add a line for the private key you just created.
The format for key entries is IdKey, followed by the private key name.
For example:

IdKey /home/joe/mykey

IdKey id_dsa_1024_myhost_a

Note: If no path information is provided, the client looks for listed keys
in ~/.ssh2/.

To configure public key authentication on the server

1 (Optional) Modify the server's AllowedAuthentications or
RequiredAuthentications settings.

Because public key authentication is allowed by default, this step is
required only if you want to change the default settings. To modify the
supported authentications, open the server configuration file
(/etc/ssh2/sshd2_config). For example, to require public key
authentication, use:

RequiredAuthentications=publickey

2 Copy the client public key to the user-specific configuration directory on
the server. The default location is ~/.ssh2.

3 Create (or edit) the key authorization file for this user on this server.
This file contains a list of the keys the server accepts for user
authentication. The default name and location is ~/.ssh2/authorization.
Configure this file for user-only write access (600 is recommended).

56 Reflection for Secure IT

4 In the authorization file, add a line for the public key you just copied.
The format for key entries is Key followed by the public key name. For
example:

Key /pathto/mykey.pub

Key id_dsa_1024_myhost_a.pub

Any listed key can be used by the server for user authentication. Keys
are assumed to be in the user-specific configuration directory (by
default, ~/.ssh2/) unless you specify an absolute path. If the key
presented by the client doesn't match any of the keys listed in the
authorization file, public key authentication fails.

Use the Key Agent

You can use the key agent, ssh-agent, to manage the private keys that you
use for authentication. The agent enables you to store private keys and use
these keys to authenticate ssh, scp, and sftp sessions. Because passphrases
are required only when you add keys to the agent, using the agent can
simplify scripting that relies on ssh. By default, the connection to the agent
can be forwarded, which means you can use the stored identities securely
anywhere in the network.

Note: Because agent forwarding creates an added security risk, you may
want to disallow it. Use ForwardAgent on the client and
AllowAgentForwarding on the server.

To launch the agent in your current shell

 Use the following command:

eval `ssh-agent`

When you launch using eval, you need to terminate the process
manually. You can use the PID, or use -k, as shown here:

ssh-agent

To launch the agent in a subshell

 Use the command argument to specify your shell; for example:

ssh-agent $SHELL

When you launch the agent in a subshell, it terminates automatically
when you log out of the shell.

 Chapter 6 User Authentication 57

To add keys to the agent

 Use ssh-add; for example, to start the agent in your current shell and
load it with the keys in your identification file, use the following
command sequence:

eval `ssh-agent`

ssh-add

You are prompted for passphrases when keys are added to the agent.
After you have loaded the keys, you can connect to the servers that
require any of the loaded keys without having to enter a passphrase.

Notes:

 When you run ssh-agent alone on the command line, a display appears
showing how to configure required environment variables. However,
these required variables aren't yet configured. To configure the
environment variables you can copy the displayed text, paste it to the
command line, and execute the command. Until you do this, you won't be
able to use ssh-add. This additional step is not required when you use
eval or $SHELL as shown in the preceding examples.

 If you use X11, call ssh-add with '< /dev/null' to activate the ssh-askpass
prompting window. This window is used for passphrase prompts.

 If you are using private keys associated with X.509 certificates, use the
ssh-add -x option to add these keys to the key agent:
ssh-add -x

Certificate Authentication for Users

Using certificates for client authentication solves some of the problems
presented by public key authentication. With public key authentication,
each client must upload a copy of the public key to every server. Certificate
authentication avoids this problem by using a trusted third party, the
certification authority (CA), to verify the validity of information coming
from the client. With certificates, you can configure authentication using a
single trust anchor instead of multiple unique client public keys.

Note: Reflection PKI Services Manager supports central management of
PKI settings. You can install and configure a single instance of PKI Services
Manager to provide certificate validation services for all supported
Attachmate products.

58 Reflection for Secure IT

Requirements

Requirement Function

Reflection PKI Services Manager
must be installed and correctly
configured.

PKI Services Manager validates the
certificate and uses a map file to determine
which users can authenticate with a valid
certificate. You need to configure at least one
trust anchor and one mapping rule for
certificate validation to succeed. You may
also need to configure access to intermediate
certificates and to certificate revocation
information.

A certificate signed by a CA and the
associated private key must be
installed on the client.

The client sends this certificate to the server
to authenticate the user.

The Reflection for Secure IT server
must have a copy of the PKI Services
Manager public key and be configured
to connect to PKI Services Manager.

The server communicates with PKI Services
Manager to confirm the validity of the user
certificate.

How it Works

1. The Reflection for Secure IT client presents a certificate to the server
for user authentication.

2. The Reflection for Secure IT server connects to Reflection PKI Services
Manager. (Set the server name and port for this connection using the
Reflection for Secure IT server PkidAddress keyword.)

3. Reflection for Secure IT verifies the identity of PKI Services Manager
using an installed public key. (Set the key name and location using the
Reflection for Secure IT server PkidPublicKey keyword.)

4. Reflection for Secure IT sends the certificate and user name to PKI
Services Manager.

5. PKI Services Manager determines if the certificate is valid and
determines if the user is allowed to authenticate with this certificate
based on the rules the PKI Services Manager administrator has
configured in the PKI Services Manager map file
(/opt/attachmate/pkid/config/pki_mapfile by default). This information
is returned to Reflection for Secure IT.

6. If the certificate is valid and the user presenting it is an allowed identity
for this certificate, the Reflection for Secure IT server validates the
user's digital signature to prove the client possesses the private key
associated with the public key contained in the user's certificate. If the
digital signature is verified, the user authentication is successful.

 Chapter 6 User Authentication 59

Configure Certificate Authentication for Users

Before you begin, review the requirements described in the Certificate
Authentication for Users (page 57) topic.

To configure user authentication using certificates, you need to install and
configure Reflection PKI Services Manager and configure your server and
client. Use the following procedures to get started. Many additional
variations are possible. For more information, see the Reflection PKI
Services Manager User Guide, which is available from
http://support.attachmate.com/manuals/pki.html.

You can install and configure a single instance of PKI Services Manager to
support certificate authentication requests from multiple Reflection for
Secure IT clients and/or servers. However, because Reflection for Secure IT
settings allow only one entry for the PKI Services Manager address and
port, this configuration creates a potential single point of failure. If PKI
Services Manager is unreachable or the server is not running, all
authentication attempts using certificates will fail. To provide load
balancing and failover, you can define a round-robin DNS entry for the PKI
Services Manager host name or place the PKI Services Manager host
behind a load balancing server.

Note: Paths shown here are based on the default installation options.

To install and configure PKI Services Manager

1 Log in as root on the Reflection PKI Services Manager server.

2 Install Reflection PKI Services Manager (page 17).

3 Put a copy of the certificate you want to designate as a trust anchor into
your local store. The default PKI Services Manager store is in the
following location:

/opt/attachmate/pkid/local-store

4 Open the PKI Services Manager configuration file in a text editor. The
default name and location is:

/opt/attachmate/pkid/config/pki_config

5 Use the TrustAnchor keyword to identify your trust anchor. For
example:

TrustAnchor = trustedca.crt

-or-

TrustAnchor = CN=SecureCA,O=Acme,C=US

Note: To configure multiple trust anchors, add additional TrustAnchor
lines.

60 Reflection for Secure IT

6 Configure certificate revocation checking. For example:

To Sample Configuration

Use CRLs stored on
an LDAP server.

RevocationCheckOrder = crlserver
CRLServers=ldap://crlserver

Use an OCSP
responder.

RevocationCheckOrder = ocsp
OCSPResponders = http://ocspresponder

Note: By default PKI Services Manager looks for CRLs in the local
store. If you use this configuration, you need to copy the CRLs to your
local store.

7 If intermediate certificates are required by the chain of trust in your
certificates, configure access to these certificates. For example:

To Sample Configuration

Use intermediate
certificates you have
added to your local
store.

CertSearchOrder=local

Use certificates
stored on an LDAP
server.

CertSearchOrder=certserver
CertServers=ldap://ldapserver

8 Save your changes to the configuration file.

9 Open the PKI Services Manager map file (page 203) in a text editor. The
default name and location is:

/opt/attachmate/pkid/config/pki_mapfile

10 Create a user RuleType stanza and add one or more rules that define
which users can authenticate with a valid certificate. For example:

RuleType = user
 { %UPN.user% } UPN.host Equals "acme.com"
 { fred root } Subject.CN Contains "Fred"

For more sample rules, see Sample PKI Services Manager Mapping Rules
(page 210).

Note: After a certificate is determined to be valid, rules are processed in
order (based on rule type then sequence). If the certificate meets the
requirements defined in the conditional expression (or if the rule has no
condition), the allowed identities specified in that rule are allowed to
authenticate. No additional rules are applied after the first match.

11 Test for valid PKI Services Manager configuration:

/usr/local/sbin/pkid -k

No errors. Configuration is valid:

 Chapter 6 User Authentication 61

12 Restart Reflection PKI Services Manager.

/usr/local/sbin/pkid restart

To configure the Reflection for Secure IT server

1 If PKI Services Manager is not installed on the same host as the
Reflection for Secure IT server, copy the PKI Services Manager public
key to the Reflection for Secure IT server.

The key location on PKI Services Manager is:

/opt/attachmate/pkid/config/pki_key.pub

Copy this to any location on the Reflection for Secure IT host. For
example:

/etc/ssh2/pki_key.pub

Note: This key file should be owned by root and not be writable by any
user but root.

2 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor.

3 Edit PkidPublicKey to specify the location in which you placed the PKI
Services Manager public key. For example:

PkidPublicKey=/etc/ssh2/pki_key.pub

4 Edit PkidAddress to specify the PKI Services Manager host and port.
For example:

PkidAddress=pkiserver.acme.com:18081

Note: If you specify a host and omit the port, the default PKI Services
Manager port (18081) is used.

5 Configure AllowedAuthentications or RequiredAuthentications to allow
or require public key authentication. The defaults shown below allow
public key authentication, but don't require it:

AllowedAuthentications=gssapi-with-mic,publickey,keyboard-
interactive,password

RequiredAuthentications=

62 Reflection for Secure IT

To configure the Reflection for Secure IT client

1 Obtain a user certificate and associated private key (page 42).

2 Install the certificate and private key. For example:

~/.ssh2/userkey

~/.ssh2/userkey.crt

Note: The certificate must be in the same directory as the private key
and use the same base name with a .crt file extension.

3 Set permissions on the user key for user-only read-only access:

chmod 400 userkey

4 Create (or edit) the client identification file. (The default is
~/.ssh2/identification.) Configure this file for user-only write access:

chmod 600 identification

5 Add a line to the client identification file that identifies the private key.
Use the CertKey keyword. (Path information is optional if the key is in
the ~/.ssh2/ directory.) For example:

CertKey userkey

6 Open the client configuration file (/etc/ssh2/ssh2_config) in a text
editor.

7 Check your configuration of the following client settings.
AllowedAuthentications must include publickey. IdentificationFile must
specify the file you configured in step 3. The defaults are shown here:

AllowedAuthentications=gssapi-with-mic,publickey,keyboard-
interactive,password

IdentificationFile=~/.ssh2/identification

Pluggable Authentication Modules (PAM)

You can configure the Reflection for Secure IT server to use Pluggable
Authentication Modules (PAM) in combination with keyboard interactive
authentication. PAM employs runtime pluggable modules that provide
authentication-related services. These modules are divided into four
categories: authentication, account management, session management, and
password management.

When PAM is configured, Reflection for Secure IT transfers control of
authentication to the PAM library. The PAM library loads the modules
specified in the PAM configuration file, and the PAM library prompts
Reflection for Secure IT to confirm successful authentication.

 Chapter 6 User Authentication 63

The following server keywords configure PAM authentication on the server.

Server keyword Configuration information

AuthKbdInt.Required To use PAM for authentication and password
management:

AuthKbdInt.Required=pam

AccountManagement To use PAM for account management:

AccountManagement=pam

UsePamSessions To use PAM for session management:

UsePamSessions=yes

PamServiceName To specify the name of the PAM service. The
default is:

PamServiceName=ssh

PamServiceNameForInternal
Processes

To specify a PAM service to be used for
internal processes. For example:

PamServiceNameForInternalProcesses ssh-shell

PamServiceNameForSubsystems To specify a PAM service to be used for
subsystems. For example:

PAMServiceNameforSubsystems sftp ssh-sftp

Configure PAM Authentication

When PAM is configured, Reflection for Secure IT transfers control of
authentication to the PAM library.

To configure PAM authentication on the server

1 Edit your PAM configuration settings to support the required modules:
auth, account, password, and session. If required modules are not
defined, the connection will be refused.

On Linux systems, the following file is installed with the server:

/etc/pam.d/ssh

64 Reflection for Secure IT

This file contains the default configuration information. For example, on
SLES systems the ssh file includes the following:

#%PAM-1.0

auth include common-auth

auth required pam_nologin.so

account include common-account

password include common-password

session include common-session

On other systems, create (or configure) /etc/pam.conf. For example, on
HP-UX:

ssh auth required /usr/lib/security/libpam_unix.1

ssh account required /usr/lib/security/libpam_unix.1

ssh password required /usr/lib/security/libpam_unix.1

ssh session required /usr/lib/security/libpam_unix.1

2 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor.

3 Confirm that AllowedAuthentications (or RequiredAuthentications)
includes keyboard-interactive as an allowed authentication method (the
default).

4 Configure PamServiceName to identify the name of your PAM service.

• Use the default (ssh) if your PAM modules are defined in
/etc/pam.d/ssh.

-or-

• If your PAM modules are defined in pam.conf, the value of
PamServiceName must match your service name (ssh in the
example shown above). If ssh is not defined in pam.conf, you may be
able to use the default service name other.

 Chapter 6 User Authentication 65

5 Configure the server to use PAM.

To use PAM for In the server configuration file, add

Authentication and password
management

AuthKbdInt.Required=pam

Account management

AccountManagement=pam

Session management

UsePamSessions=yes

6 (Optional) To include the words "PAM authentication" in the prompt
that client users see during authentication, include the following:

AuthKbdInt.Verbose=yes

To configure PAM authentication on the client

 Confirm that AllowedAuthentications includes keyboard-interactive as
an allowed authentication method (the default).

RADIUS Authentication

RADIUS is an authentication, authorization, and accounting service that
authenticates users by integrating with password databases, such as the a
UNIX password file, Active Directory, LDAP, and simple text files
containing user/password pairs. Reflection for Secure IT supports RADIUS
for authentication purposes only.

Requirements

One or more RADIUS authentication servers must be configured. To
configure Reflection for Secure IT, you need the name of the RADIUS
server, the port used for RADIUS communication (usually 1812 or 1645),
and the shared secret used by the RADIUS server. You'll use this
information to create a RADIUS configuration file.

66 Reflection for Secure IT

How it Works

The Reflection for Secure IT server acts as a RADIUS client in order to
authenticate a user. Requests are sent to any RADIUS servers you have
configured in the RADIUS file.

1. The Reflection for Secure IT server receives a keyboard-interactive
authentication request from a client.

2. If RADIUS authentication is enabled, the Reflection for Secure IT
server attempts to authenticate the user by sending an ACCESS-
REQUEST message with the User-Name and Password attribute/value
pair to the first RADIUS server you have configured.

3. The Reflection for Secure IT server waits for an ACCESS-ACCEPT or
ACCESS-REJECT message from the RADIUS authentication server.

4. If the Reflection for Secure IT server receives an ACCESS-ACCEPT
message, the client connection is allowed and the Reflection for Secure
IT server provides user access based on the current server
configuration. If the server receives an ACCESS-REJECT message, or it
fails to receive a response, the server attempts to authenticate to any
additional RADIUS servers you have configured. If no ACCESS-
ACCEPT message is received from any RADIUS server, RADIUS
authentication fails and the Reflection for Secure IT server attempts
any other allowed authentications.

Note: Authentication fails if a user is able to authenticate to the
RADIUS authentication server, but no account exists for that user on
the Reflection for Secure IT server.

Configure RADIUS Authentication

When RADIUS is configured, Reflection for Secure IT transfers control of
authentication to the RADIUS authentication server.

To configure the Reflection for Secure IT server

1 Create the following file and set owner-only read and write access
(permissions = 600).

/etc/ssh2/radius_config

2 Open this file in a text editor. Add a line for each RADIUS server that
identifies the server, the port used for RADIUS on that server, and the
shared secret required for RADIUS clients to authenticate to that
server. For example:

server1:1812:secret1

server2:1812:secret2

Note: RADIUS servers are contacted in order from top to bottom until a
response to the authentication request is received.

 Chapter 6 User Authentication 67

3 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor. Edit the following keywords:

AllowedAuthentications=keyboard-interactive

AuthKbdInt.Required=radius

RadiusFile=/etc/ssh2/radius_config

To configure the client

 Enable keyboard-interactive authentication. (This is the default for all
Reflection for Secure IT clients.)

RSA SecurID Authentication

RSA SecurID is a two-factor authentication solution from RSA Security,
Inc that is based on hardware or software tokens. We recommend that you
review the Authentication Manager documentation before using SecurID.

Reflection for Secure IT supports RSA SecurID authentication using PAM.

Required Item Function

RSA Authentication
Manager

Verifies authentication requests
and centrally manages
authentication policies.

RSA Authentication
Agent

Intercepts authentication requests
and directs them to the
Authentication Manager for
authentication.

Note: The RSA Authentication
Agent for PAM must be running on
the same computer as the
Reflection for Secure IT server.

Hardware Token A hardware device, such as a key
fob or PIN card, that generates a
one-time authentication code.

RSA Authentication
Agent for PAM

Transfers control of authentication
to RSA.

Configure SecurID Authentication

Reflection for Secure IT supports the RSA Authentication Agent for PAM,
which allows RSA SecurID tokens to be used when connecting to the
server. The RSA Authentication Agent for PAM must be running on the
same host as the Reflection for Secure IT server.

68 Reflection for Secure IT

To configure the client

 Enable keyboard-interactive authentication. (This is the default for all
Reflection for Secure IT clients.)

To configure the server

1 Install the RSA Authentication Agent on the computer running the
Reflection for Secure IT server.

2 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor.

3 Enable keyboard-interactive authentication and configure the server to
use PAM for authentication and password management:

AllowedAuthentications=keyboard-interactive

AuthKbdInt.Required=pam

To start the server

Note: You need to set the environment variables VAR_ACE and
LD_LIBRARY_PATH before you start the Secure Shell server. Set
VAR_ACE to the directory of the RSA Agent for PAM installation that
contains the sdconf.rec file. Set LD_LIBRARY_PATH to the directory
where the RSA/Server or RSA/Agent is installed.

 To set the environment variables and start the server:

$ VAR_ACE=/opt/ace/data LD_LIBRARY_PATH=/opt/ace/prog /usr/sbin/sshd2

Note: To make the environment variable changes persist through a
restart, you can modify the server startup script (page 19), or modify the
root user's default profile.

 Chapter 6 User Authentication 69

Configure Account Management on HP-UX Trusted
Systems

To ensure that Reflection for Secure IT correctly respects the login
restrictions imposed by HP-UX Trusted Systems, you must configure the
server to use PAM account management.

Caution: Configuring PAM account management is required for use with
HP-UX Trusted Systems to ensure that only allowed users can connect. If
the server is not configured to use PAM account management, in some
circumstances the server will allow users access to the system who should
be denied access.

To configure PAM account management on the server

1 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor.

2 Configure the server to use PAM for account management:

AccountManagement=pam

Note: To support PAM account management, PAM must be properly
configured on the host system.

Secure File Transfer

In this Chapter

Secure File Transfer (sftp) 71

Use sftp Interactively 72

Run sftp Batch Files 73

Configuring the sftp Transfer Method (ASCII or Binary) 74

Secure File Copy (scp) 75

Smart Copy and Checkpoint Resume 76

Configure Upload and Download Access 77

Set File Permissions on Downloaded Files 78

Set File Permissions on Uploaded Files 79

Reflection for Secure IT supports programs that you can use for secure file
transfer: sftp and scp. Both commands can help you manage file transfers
between computers efficiently and securely.

Use sftp to transfer files securely between the local computer and a remote
host. You can also perform other file management commands, such as
creating files and changing permissions. You can use sftp interactively or in
combination with batch files to automate actions.

Use scp to copy files securely between the local computer and a remote
host, or to transfer files securely between two remote hosts.

Secure File Transfer (sftp)

Secure file transfer (sftp) provides a secure alternative to ftp. You can run
sftp interactively, or use it in combination with a batch file for automated,
secure file transfer.

Because sftp uses authentication and encryption provided by ssh, a Secure
Shell server must be running on the remote computer. Settings for sftp
connections are controlled by the ssh client configuration file. For details
about these settings, see Client Configuration Keywords (page 118). You can
also use the -o option to configure settings on the sftp command line.

C H A P T E R 7

72 Reflection for Secure IT

Note: Command line options override configuration file settings.

For detailed information about command line options, see sftp Command
Line Options (page 172). For an sftp command reference, see Supported sftp
Commands (page 176).

Use sftp Interactively

You can use an interactive sftp session to execute one or more file
management commands securely on a remote computer.

To open an interactive sftp session

1 Connect to a remote host. For example:

sftp joe@myhost.com

Note: You can omit the user name if your name on the Secure Shell
server is the same as your current user name.

After a successful connection is established, the following prompt
appears:

sftp>

2 Do any of the following:

To Use

View a list of supported
commands

help; for example:

sftp> help

Learn more about
supported commands

help command; for example:

sftp> help put

Transfer and manage
files

Supported commands (page 176); for
example, to transfer the file demo from the
local working directory to the remote
working directory:

sftp> put demo

End the session quit; for example:

sftp> quit

Note: If you launch sftp without specifying a host name, you can use the
interactive open and close commands to connect to one or more hosts
during your interactive session.

 Chapter 7 Secure File Transfer 73

Run sftp Batch Files

Using sftp batch files provides a secure way to automate file management.

To create and run an sftp batch file

1 Configure the client and server to support a non-interactive client
authentication method, such as GSSAPI, or public key without
passphrase protection.

Note: Authentication methods that require interaction are not
supported when you use the sftp batch file option (-B).

2 On the client, create an sftp batch file. The batch file can use any of the
interactive commands supported by sftp (page 176). For example, you
might create a file called demo with commands such as:

get path/file1

get webfiles/*.htm

3 Use sftp to connect to the remote host and run the batch file. For
example:

sftp -B demo myname@myhost.com

The client runs the commands in the batch file and then exits.

Notes:

 After a successful login, sftp executes each command in the batch file
until a bye, exit or quit command is found, and then terminates the
connection.

 If a command in the batch file fails, sftp continues executing the
remaining commands, and returns the error code of the first failed
command. However, commands prefixed with "-" (dash) always return 0,
even if the command fails. To configure a batch file that returns a
separate error for each transfer command, use scp.

74 Reflection for Secure IT

Configuring the sftp Transfer Method (ASCII or
Binary)

SFTP supports two transfer methods: ASCII and binary. In ASCII mode
individual letters, numbers, and characters are transferred using their
ASCII character code, and the receiving computer saves these in the
correct text format for that system. During ASCII transfers between UNIX
and Windows computers, newline characters are converted as appropriate
for each system. (You can also manually configure newline character
conversion if necessary.) In binary transfers, data is transferred to the
server byte-by-byte with no data conversion.

Reflection for Secure IT also provides a smart transfer option called auto.
In auto mode, the transfer method is determined by file extension. Files
with specified file extensions use ASCII transfer; all other files use binary
transfer. The default list of ASCII file types is "txt, htm*, pl, php*. To
modify this list for a given sftp session, use the setext command. To change
the default file extension list, use the client keyword
FileCopyAsciiExtensions.

sftp command Effect

ascii -s Displays the current transfer mode.

binary Sets the current transfer mode to binary (the
default).

auto Sets the current transfer mode to auto.

getext Displays the current list of file extensions that use
ASCII file transfer when auto mode is enabled.

setext Specifies the current list of file extensions that use
ASCII file transfer when auto mode is enabled. To
specify multiple extensions, use a comma or space-
separated list; this command is not cumulative.
Wildcard (zsh-glob) characters are supported. Don't
precede file extensions with a period. To specify
extensions containing spaces, use quotation marks
around the extension or use a backslash as an escape
character.

ascii Sets the current transfer mode to ASCII. When no
remote newline is explicitly stated, the client
attempts to retrieve the newline convention from the
server. If the server does not support this
functionality, the client sets the remote newline to
CRLF.

ascii dos Sets the remote newline to CRLF.

ascii unix Sets the remote newline to LF.

 Chapter 7 Secure File Transfer 75

Client keyword Effect

FileCopyAsciiExtensions Specifies the default list of file types for
ASCII file transfer when auto mode
transfer is enabled. The default is 'txt,
htm*, pl, php*'.

Secure File Copy (scp)

Use scp to copy files securely between the local computer and a remote
host, or to transfer files securely between two remote hosts.

Both source and destination file names can include host and user
specifications to indicate that files are to be copied to or from that host.
Copies between two remote hosts are permitted. Wildcards are supported.
When recursion is off (the default), name substitution occurs on file names
only, not directories. When recursion is enabled (using -r), name
substitution includes files and directories. By default, existing files are
overwritten. To control overwrite behavior, use --overwrite. (If the files are
identical no transfer occurs regardless of this setting value.)

Because scp uses authentication and encryption provided by ssh, a Secure
Shell server must be running on the remote computer. Settings for scp
connections are controlled by the ssh client configuration file. For details
about these settings, see Client Configuration Keywords (page 118).

You can also use the -o option to configure settings on the scp command
line. Command line options override configuration file settings.

Examples

The following samples show how you can use scp to transfer files securely —
between a local computer and remote host, or between two remote hosts.

To Example

Transfer a remote file
(file1) to a specified local
file (file2) and location

scp joe@myhost:/source/file1 /destination/file2

Copy all *.htm files from the
current working directory
on the local computer to
joe's default directory on
myhost.com

scp *.htm joe@myhost.com:.

Copy the specified file from
remote host1 to remote
host2

scp joe@host1:/dir/scr_file joe@host2:/dir/dest_file

Note: Two authentications are required.

76 Reflection for Secure IT

Smart Copy and Checkpoint Resume

Reflection for Secure IT UNIX clients and servers support features that
help minimize the amount of time spent repeating unnecessary transfer of
data.

Identical Files (Smart File Copy)

If a client user initiates a transfer and an identically named file already
exists on the server, the server computes a hash of the server copy of the
file and sends this value to the client. The client computes a hash of the
client copy of the file and compares that to the value from the server. If the
two hashes are identical, this indicates that the files are identical, and no
data transfer occurs. The timestamp of the destination file is updated unless
you transfer using the scp -p option.

Smart file copy is enabled by default. To disable from the client, set
SmartFileCopy to no. To disable it from the server, set SmartFileTransfer
to no. When smart file copy is disabled, existing files are always
overwritten.

Automatic Resume of Interrupted File Transfer (Checkpoint Resume)

Reflection for Secure IT client and servers can resume an interrupted file
transfer at the point at which the transfer was interrupted. For example, if
a connection is dropped during a file upload, the client user can restart the
transfer. The Reflection for Secure IT client determines the size of the file
on the server, and requests a hash of that file from the server. The client
computes the hash of the local file up to the length that the server already
has. If the hashes are the same, the transfer resumes at that point in the
file.

Note: Computing a hash to compare files does not produce useful data for
ASCII transfers between systems with different line endings, so the hash
comparison is skipped in this case and the complete file is always
transferred.

Checkpoint resume is enabled by default. To disable from the client, set
CheckpointResume to no. To disable it from the server, set
SmartFileTransfer to no. When checkpoint resume is disabled, file transfer
always starts over after an interruption.

Note: If you transfer files in a high latency network, the time required to
send the hash values across the network can cause delays that exceed the
benefit of using these features. In this case, you may be able to improve
performance by disabling the smart copy and checkpoint resume features.

 Chapter 7 Secure File Transfer 77

Configure Upload and Download Access

By default, users have full access to all directories permitted by their login
account. You can use AllowSftpCommands to limit what kinds of actions
users can perform using sftp and scp. This keyword supports a comma-
separated list of one or more of the following: all, none, browse, download,
upload, delete, rename. The upload option enables users to modify files,
create files, create directories, or modify file attributes on the server. The
download option enables users to read file contents.

AllowSftpCommands controls access from commands that use the SFTP
subsystem. This includes both scp and sftp commands from Reflection for
Secure IT clients and sftp commands from OpenSSH clients. It does not
affect scp commands from OpenSSH clients; the OpenSSH scp command
does not use the SFTP subsystem; it executes an rcp command through the
secure channel.

Caution: Client users may have a number of ways to access server files and
directories. Factors to consider when configuring your server include
session access, tunneling access, and file and directory permissions
configured on the system.

To configure upload and download permissions

Note: This change affects both scp and sftp transfers.

1 Open the server configuration file (/etc/ssh2/sshd2_config) in a text
editor. (You can also configure this keyword in subconfiguration files.)

2 Edit the AllowSftpCommands keyword. For example,

To allow users to view and download files, but disallow any changes to
the server files:

AllowSftpCommands = browse, download

To allow users to browse and upload files, but not view the contents of
files on the server:

AllowSftpCommands = browse, upload

3 To prevent file access via terminal sessions or remote command
execution (including OpenSSH scp), you can use the SessionRestricted
keyword:

SessionRestricted = subsystem

78 Reflection for Secure IT

Set File Permissions on Downloaded Files

When you download a file to the client using either sftp or scp, the file
permissions of the downloaded file can depend on both the client
configuration and the source file permissions.

If the file already exists on the client:

 The client file permissions remain the same after a transfer; the
transfer updates the contents of the file contents, but does not modify
existing file permissions.

If the file does not exist on the client, the following factors affect the
permissions set on the transferred file.

 The downloaded file is given the same permissions as the source file
provided there are no settings in effect on the client that prevent the
creation of files with these permissions.

 If there are local settings in effect that limit the permissions of newly
created files, these are applied to the downloaded file. These settings
can be globally configured, or can be modified for the current session
using the umask command.

To set permissions on downloaded files using umask:

1 Use umask to specify the limits you want for newly created files. For
example, you can use either of the following equivalent commands to
limit new files to user-only read and write access.

$ umask 066

-or-

$ umask u=rwx,g=x,o=x

2 Connect to the server and download using either sftp or scp.

With the sample umask shown above, downloaded files are created on
the client without group or world access.

 Chapter 7 Secure File Transfer 79

The following session shows the use of umask to set permissions on files
downloaded using sftp. The first file (file1) allows user, group, and world
read/write access (666) on the server. The second file (file2) allows user
read/write access, and group and world read-only access (644) on the
server. After the download, both files allow user-only read/write access
(600) on the client.

$ umask 066

$ sftp joe@myserver.com

Authentication successful.

sftp> ls -l file1

-rw-rw-rw- 0 joe users 108 Sep 30 02:52 file1

sftp> get file1

/home/joe/file1 108 0.0KB/s 00:00 100%

sftp> lls -l file1

-rw------- 0 joe users 8 Sep 30 11:47 file1

sftp> ls -l file2

-rw-r--r-- 0 joe users 225 Sep 30 02:56 file2

sftp> get file2

/home/joe/file2 225 0.0KB/s 00:00 100%

sftp> lls -l file2

-rw------- 0 joe users 225 Sep 30 11:47 file2

sftp> exit

$

Set File Permissions on Uploaded Files

When you upload a file to the server using either sftp or scp, the file
permissions of the uploaded file can depend on both the server
configuration and the source file permissions.

If the file already exists on the server:

 The server file permissions remain the same after a transfer; the
transfer updates the contents of the file contents, but does not modify
existing file permissions.

If the file does not exist on the server, the following factors affect the
permissions set on the transferred file. Items lower on this list override
items higher on the list.

1. The uploaded file is given the same permissions as the source file
provided there are no settings in effect on the server that prevent the
creation of files with these permissions.

80 Reflection for Secure IT

2. If the client requests a UMASK value using the SetRemoteEnv
keyword, those permission limits are applied.

3. System-wide settings for new file creation are applied. (For example,
these may be configured in standard system files such as
/etc/default/login and /etc/environment, or using PAM.)

4. If a UMASK value is configured in a global Reflection for Secure IT
environment file (/etc/ssh2/environment), those permission limits are
applied.

5. If a UMASK value is configured in a user-specific Reflection for Secure
IT environment file (~/.ssh2/environment), those permission limits are
applied.

Note: UMASK is included by default in the list of environment variables
allowed by SettableEnvironmentVars. If UMASK is not included in this list,
you cannot modify UMASK values using an environment file on the server or
using the client SetRemoteEnv keyword.

To set permissions on uploaded files on the server using the
environment file

1 Create (or edit) the environment file.

To configure Use this path and file name

User-specific settings ~/.ssh2/environment

Global settings /etc/ssh2/environment

2 Add a line specifying the UMASK value that you want to apply to
uploaded files. For example:

UMASK=066

To set permissions on uploaded files from the client using
SetRemoteEnv

 Open the client configuration file (/etc/ssh2/ssh2_config) in a text
editor. Add a line using SetRemoteEnv to specify the UMASK value you
want to apply to uploaded files. For example:

SetRemoteEnv=UMASK=066

-OR-

 Use SetRemoteEnv on the command line to specify a UMASK value.
For example:

sftp -oSetRemoteEnv=UMASK=066 joe@myserver.com

 Chapter 7 Secure File Transfer 81

The following session shows the use of SetRemoteEnv to set permissions on
a file uploaded using scp. The source file (demo) allows user, group, and
world read/write access (644) on the client (abchost). After the upload, the
file allows user-only read/write access (600) on the server (xyzhost).

joe@abchost:~> ls -l demo

-rw-r--r-- 1 joe users 30 2008-10-02 12:07 demo

joe@abchost:~> scp -oSetRemoteEnv=UMASK=066 demo joe@10.10.3.232:

Authentication successful.

demo 30 0.0KB/s 00:00 100%

joe@abchost:~> ssh joe@10.10.3.232

Authentication successful.

Last login: Thu Oct 2 16:56:22 2008 from 150.215.83.121

[joe@xyzhost ~]$ ls -l demo

-rw------- 1 joe joe 30 Oct 2 16:57 demo

[joe@xyzhost ~]$

Port Forwarding

In this Chapter

Local Port Forwarding 84

Remote Port Forwarding 87

Configure Port Forwarding 89

FTP Forwarding 90

X Protocol Forwarding 91

Port Forwarding Settings 92

Port forwarding, also known as tunneling, provides a way to redirect
communications through the Secure Shell channel of an active session.
When port forwarding is configured, all data sent to a specified port is
redirected through the secure channel. You can configure any of the
following.

 Local port forwarding moves data securely between an application client
running on the Secure Shell client host and a remote application server.

 Remote port forwarding moves data securely between an application
client running on the Secure Shell server host and a local application
server.

 FTP forwarding allows you to forward all FTP communications through
the Secure Shell tunnel.

 X11 forwarding moves X protocol data securely between an X server
running on the Secure Shell client host and an X client running on the
Secure Shell server host. This is a special category of dynamic remote
port forwarding, and is configured using different settings.

C H A P T E R 8

84 Reflection for Secure IT

Terminology

Port forwarding involves two sets of client and server applications — the
Secure Shell client and server, and the client/server pair whose data is
being forwarded. In this guide, the following terms are used as defined
below in reference to port forwarding:

Term Definition

Secure Shell server The Reflection for Secure IT server daemon.

Secure Shell server
host

The computer on which the Secure Shell server
runs.

Secure Shell client The Reflection for Secure IT client application.

Secure Shell client
host

The computer on which the Secure Shell client
runs.

Application client The client program of the client/server pair whose
data you want to forward. For example, this might
be a mail client or Web browser.

Application client
host

The computer on which the application client runs.
This is often either the Secure Shell server host or
the Secure Shell client host, but it can also be a
third host.

Application server The server program that communicates with your
application client, such as a mail server or Web
server.

Application server
host

The computer on which the server application
runs. This can be either the Secure Shell server
host or the Secure Shell client host, or it can also
be a third host.

Local Port Forwarding

Use local port forwarding to forward data securely from an application
client running on the same computer as the Secure Shell client. When you
configure local port forwarding, you designate an arbitrary local port to use
for forwarding data, and a destination host and port to receive the data.
Local port forwarding works as follows.

1. When the Secure Shell connection is established, the Secure Shell client
opens a listening socket (page 222) on the local computer (the one
running the Secure Shell client) using the designated local port. In most
cases, this socket is available only to applications running on the Secure
Shell client host.

 Chapter 8 Port Forwarding 85

The gateway ports setting controls whether locally forwarded ports are
available to remote applications. By default this setting is not enabled,
and the client uses the loopback address ("localhost" or 127.0.0.1) when
it opens a socket for local port forwarding. This prevents applications
running on other computers from connecting to the forwarded port.
When you enable gateway ports, a remote application client can open a
socket using the Secure Shell client's Ethernet address (such as an IP
address, a URL, or a DNS name). For example, a Secure Shell client
running on acme.com might be configured to forward port 8088. When
gateway ports are not enabled, the forwarded socket is localhost:8088.
When gateway ports are enabled, the forwarded socket is
acme.com:8088.

Caution: Enabling gateway ports reduces the security of your client host,
network, and connection because it allows remote applications to use the
forwarded port on your system without authenticating.

2. An application client is configured to connect to the forwarded port
(rather than directly to the application server host and port). When
that client establishes a connection, all data is sent to the listening port,
and then redirected to the Secure Shell client.

3. The Secure Shell client encrypts the data and sends it securely through
the Secure Shell channel to the Secure Shell server.

4. The Secure Shell server receives the data, decrypts it, and redirects it to
the destination host and port used by the application server.

Note: If the final destination host and port are not on the Secure Shell
server host, data is sent in the clear between the Secure Shell host and
the application server host.

5. The return data from the application server is directed to the Secure
Shell server, which encrypts it and sends it securely to the Secure Shell
client through the SSH tunnel. The Secure Shell client decrypts the
data and redirects it to the original application client.

The general command-line syntax for local port forwarding is:

ssh -L listening_port:app_host:hostport user@sshserver

86 Reflection for Secure IT

The diagrams that follow illustrate two ways to use this.

In the configuration shown above, the application client and the Secure
Shell client both run on HostA. The Secure Shell server and application
server both run on HostB. All data sent to port 2222 on HostA is forwarded
to port 222 on HostB. In this arrangement, all data in transit is securely
encrypted. The following command (in which localhost identifies the
loopback address on HostB) configures this:

ssh -L 2222:localhost:222 user@HostB

 Chapter 8 Port Forwarding 87

The following diagram illustrates local port forwarding to a third host. In
this configuration, the application server runs on a different host than the
Secure Shell server. All data sent to port 2222 on HostA is forwarded to
port 222 on HostC.

The following command configures this:

ssh -L 2222:HostC:222 user@HostB

Note: Data sent between HostB and HostC is not encrypted.

Remote Port Forwarding

Use remote port forwarding to forward data securely from an application
client running on the Secure Shell server host. When you configure remote
port forwarding, you designate an arbitrary remote port to use for
forwarding data and a destination host and port to receive the data. Remote
port forwarding works as follows.

1. When the Secure Shell connection is established, the Secure Shell server
opens a listening socket (page 222) on the Secure Shell server host using
the specified listening port.

88 Reflection for Secure IT

2. A client application running on the Secure Shell server host is
configured to connect to the listening port (rather than directly to the
application server host and port). When that client establishes a
connection, all data is sent to the listening port, and then redirected to
the Secure Shell server.

3. The Secure Shell server encrypts the data and sends it securely through
the SSH tunnel to the Secure Shell client.

4. The Secure Shell client receives data, decrypts it, and redirects it to the
destination host and port (on the Secure Shell client host) that is used
by the server application.

5. The return data from the server application is directed to the Secure
Shell client, which encrypts it and sends it securely to the Secure Shell
server through the SSH tunnel. The Secure Shell server decrypts the
data and redirects it to the original client application.

The general command-line syntax for remote port forwarding is:

ssh -R listening_port:app_host:hostport user@sshserver

The diagram that follows illustrates one possible remote port forwarding
configuration.

The application server and the Secure Shell client run on HostA. The
Secure Shell server and application client both run on HostB. All data sent
to port 2222 on HostB is forwarded to port 222 on HostA. In this
arrangement, all data in transit is securely encrypted. The following
command configures this.

ssh -R 2222:localhost:222 user@HostB

 Chapter 8 Port Forwarding 89

Configure Port Forwarding

You can establish a port forwarding tunnel using either the ssh command
line or in the client configuration file (/etc/ssh2/ssh2_config).

To configure and use local port forwarding

1 Pick a local port to use for forwarding. (This procedure uses 2110 as an
example.)

Note: This can be any available port, but don't use port values less that
1024. These ports are, by convention, reserved for services, and may not
be available.

2 Configure your application client (for example your e-mail client) to
connect to the forwarded port on the local host rather than to the
remote application server socket. For this example:

Forwarded local port Remote application server socket

localhost:2110 mailserver.com:110

3 Connect the Secure Shell client.

Use local port forwarding to send data from the forwarded local port to
the remote application server. The general command line syntax is:

ssh -L listening_port:app_host:hostport user@sshserver

For this example, the mailserver runs on the same host as the Secure
Shell server. The application host in this case is "localhost" on
mailserver.com. The command-line configuration is:

ssh -L 2110:localhost:110 joe@mailserver.com

4 Use the application client as you normally would.

The data is forwarded securely from the listening port on the client host
(localhost:2110) through the secure channel to the remote application
server's listening socket on mailserver.com (localhost:110).

Forwarding to a Third Host

In the preceding example, the application server and Secure Shell server
run on the same host. The forwarded data is encrypted for the entire
transit. It's also possible to use port forwarding when the application server
runs on a different host. For example:

ssh -L 2110:mailserver.com:110 user@sshserver.com

In this case, data is forwarded through the secure tunnel to sshserver.com.
Data is then forwarded in the clear to port 2110 on mailserver.com.

90 Reflection for Secure IT

FTP Forwarding

You can configure Reflection for Secure IT to forward FTP communications
through the Secure Shell tunnel. FTP forwarding supports both active and
passive mode transfers.

Advantages of using FTP forwarding include:

 You can continue to use FTP applications. All communications
(including the FTP command channel and all data channels) are
securely encrypted between the Secure Shell client and the Secure Shell
server.

 If the Secure Shell server and the FTP server run on the same
computer, only the Secure Shell port (22) has to be opened in the
firewall. Without tunneling, FTP communications require opening the
FTP port (21) and a wide range of non-privileged ports for passive mode
transfers.

 The FTP client computer doesn't require any open ports in the firewall
for active mode transfers.

Depending on your hardware resources, forwarding FTP connections using
Secure Shell channels may lead to some variations in the transfer speeds
when compared to plain FTP connections. If the network is faster than the
CPU, tunneling FTP may result in slower transfer because of the
encryption process. If the network is slower than the CPU, enabling Secure
Shell compression may increase transfer rates.

Local FTP Forwarding

To forward FTP communications from a port used by a local FTP client to
a remote FTP server, add the prefix "ftp/" before the local listening port.

In the following example, FTP communications sent from an FTP client (on
the same computer as the Secure Shell client) are forwarded to an FTP
server running on myhost.com. With this configuration, you would
configure the FTP client to connect to localhost:2121.

ssh -L ftp/2121:myhost.com:21 user@myhost.com

-or-

LocalForward=ftp/2121:myhost.com:21

Note: The FTP client must be on the same server as the Reflection for
Secure IT client. You can configure local FTP forwarding to an FTP server
on a different host than the Reflection for Secure IT server, but in that case
data is unencrypted in transit from the Reflection for Secure IT server to
the FTP server.

 Chapter 8 Port Forwarding 91

Remote FTP Forwarding

To forward FTP communications from a port used by a remote FTP client
to a local FTP server, add the prefix "ftp/" before the remote listening port.

In the following example, FTP communications sent from an FTP client (on
the same computer as the Secure Shell server) are forwarded to an FTP
server (on the same computer as the Secure Shell client). With this
configuration, you would configure the FTP client to connect to port 3333.

ssh -R ftp/3333:localhost:21 user@myhost.com

-or-

RemoteForward=ftp/3333:localhost:21

Note: The FTP server must be on the same host as the Reflection for
Secure IT client and the FTP client must be on the same host as the
Reflection for Secure IT server.

X Protocol Forwarding

The X Window System provides support for graphical display on UNIX
systems. X protocol forwarding provides a way to secure the communication
between X clients and remote X servers. X forwarding is enabled by default.
X forwarding works as follows:

1. If X forwarding is enabled, the Secure Shell client requests X forwarding
when it connects to the server.

2. If X forwarding is supported by the server, the server sets itself up as a
proxy X server on the server host, and sets the DISPLAY environment
variable in the client shell to point to the proxy X display.

3. When you run an X client program on the server host, it connects to the
proxy display.

4. The Secure Shell client acts as a proxy X client and connects to the X
server on the client host.

5. All X protocol information is sent through the Secure Shell channel.

Working with X11 Settings

The client setting ForwardX11 enables or disables X11 forwarding. (The
default is yes.) The client setting TrustX11Applications specifies whether
the X server treats forwarded X11 client applications as trusted. (The
default is no.)

92 Reflection for Secure IT

Under some conditions, the configuration of these settings may affect the
launch speed of X client applications. This happens when more than two
systems are involved. For example:

System1 runs an X server and the Secure Shell client.
System2 runs an X client application, the Secure Shell client, and the
Secure Shell server.
System3 runs an X client application and the Secure Shell server.

When a user makes an ssh connection from System1 to System2 with
X11Forwarding=yes (the default) and TrustX11Applications=no (the
default), there is no delay in starting X applications.

If the user makes a subsequent ssh connection from the new shell to
System3 with X11Forwarding=yes (the default) and
TrustX11Applications=no (the default), there will be a long delay (as much
as 6 seconds) after the user authenticates during which X applications
started from System3 will not be displayed to the X server running on
System1. This delay is added by the xauth application as it tries to
communicate with the X server and register a new cookie. In order to avoid
this delay and run the X applications from System3, set
TrustX11Applications=yes for the second connection.

Note: Setting TrustX11Applications=yes for the second connection does not
create any additional security risk to the X server running on System1. This
is because the xauth application registers into the existing cookie created on
System2 by the initial X11 forwarding (done from System1), for which
TrustX11Applications=no.

Port Forwarding Settings

Use the following keywords or command line options to configure port
forwarding.

Command Line Options

You can use the following options on the ssh command line.

Option Description

-L listening_port:host:hostport Open the specified port on the Secure Shell
client host (listening_port) and forward data
to the destination host and hostport.

-R listening_port:host:hostport Open the specified port on the Secure Shell
server host (listening_port) and forward data
to the destination host and hostport.

-X Enables X11 connection forwarding and treats
X11 clients as untrusted. Untrusted remote
X11 clients are prevented from tampering

 Chapter 8 Port Forwarding 93

Option Description
with data belonging to trusted X11 clients.

-x Disables X11 connection forwarding.

-Y Enables X11 connection forwarding and treats
X11 clients as trusted.

Client Configuration Keywords

You can configure the following settings in the client configuration file.
(The global file is /etc/ssh2/ssh2_config; the user-specific file is
~/.ssh2/ssh2_config.)

Keyword Description

ClearAllForwardings Clears any local, remote, or dynamically
forwarded ports that have already been
processed from either a configuration file or
the command line. scp and sftp clear all
forwarded ports automatically, regardless of
the value of this setting. The default is no.

ForwardX11 Equivalent to -X.

GatewayPorts Controls whether forwarded ports on the
Secure Shell client host are available to remote
applications. The default is no, which prevents
applications running on other computers from
connecting to forwarded ports.

LocalForward
listening_port:host:hostport

Equivalent to -L.

RemoteForward
listening_port:host:hostport

Equivalent to -R.

TrustX11Applications Specifies whether the X server treats
forwarded X11 client applications as trusted.
The default is no.

XauthPath Specifies the full path of the xauth program.
The default is /usr/bin/xauth.

94 Reflection for Secure IT

Server Configuration Keywords

You can configure the following settings in the server configuration file
(/etc/ssh2/sshd2_config).

Option Description

AllowTCPForwarding Enables or disables all port forwarding. The
default is yes.

AllowX11Forwarding Specifies whether X11 forwarding is allowed.
The default is yes.

AllowTCPForwardingForGroups
DenyTCPForwardingForGroups

Allows or denies port forwarding for specified
groups. Regular expressions are supported.

AllowTCPForwardingForUsers
DenyTCPForwardingForUsers

Allows or denies port forwarding only for
specified users. Regular expressions are
supported.

ForwardACL Provides detailed control over port
forwarding. For details, see Server
Configuration Keywords (page 132).

GatewayPorts Specifies whether remote hosts are allowed to
connect to ports forwarded for the client. The
default is no.

X11UseLocalHost Specifies whether the server should bind X11
forwarding to the loopback address. The
default is yes.

Controlling Access and Authorization

In this Chapter

Access Control Settings 95

Using Allow and Deny Keywords 96

Configuring User Access 97

Configuring Group Access 98

Configuring Client Host Access 98

Access Control Settings

The table below provides an overview of server settings you can use to
control client access to the server.

By default, all client users with an account on the server host can connect
to the server, open a terminal session, and access all local files and
directories allowed for their user account from any client computer. You
can edit the server configuration file (/etc/ssh2/sshd2_config) to customize
access for client users, groups, and computers.

To Use

Set the maximum number of
connections

MaxConnections

Allow access to specified session
types only

SessionRestricted

Control access from client users AllowUsers
DenyUsers
UserSpecificConfig

Control access from client groups AllowGroups
DenyGroups
UserSpecificConfig

Control access from client hosts AllowHosts
DenyHosts
HostSpecificConfig

Control access using TCP Wrappers LibWrap

C H A P T E R 9

96 Reflection for Secure IT

To Use

Restrict sftp and scp users or
groups to a confined directory tree

ChrootSftpUsers
ChrootSftpGroups

Control upload and download access
rights for sftp and scp users.

AllowSftpCommands

Restrict port forwarding AllowTcpForwardingForGroups
DenyTcpForwardingForGroups
AllowTcpForwardingForUsers
DenyTcpForwardingForUsers
ForwardACL
GatewayPorts
AllowX11Forwarding
X11UseLocalHost

Configure PAM authentication AccountManagement
AuthKbdInt.Required
PamServiceName
UsePamSessions

Using Allow and Deny Keywords

The following keywords are available for controlling access to users, groups,
and/or client host computers:

AllowUsers, DenyUsers, AllowGroups, DenyGroups, AllowHosts,
DenyHosts, AllowTcpForwardingForUsers, DenyTcpForwardingForUsers,
AllowTcpForwardingForGroups, DenyTcpForwardingForGroups,
ForwardACL

You can specify users, groups, or hosts for any of these keywords by using a
single instance of the keyword with a comma-separated list of values, or by
including multiple instances of the keyword, in which case the final assigned
value is cumulative over all instances.

The server uses the following logic to determine whether to allow a
connection.

1. Check to see if any "Deny" keywords are configured for a given access
category (hosts, users, group, or TCP forwarding); and deny access if the
client matches any denied expression.

2. Check to see if any "Allow" keywords are configured for the same
category.

• If no "Allow" keywords are configured, access is granted.

• If any "Allow" keywords are configured, the server allows access only
if the client matches an allowed expression.

 Chapter 9 Controlling Access and Authorization 97

Examples

The following samples show how you can allow access, deny access, or use a
combination of allow and deny.

To Example

Allow access only to users whose
name starts with "abc".

AllowUsers= abc.*

Deny access to client hosts with an IP
address that begins with 123.156.78,
and allow access to users on any other
client.

DenyHosts=123\.156\.78\..*

Allow access to all hosts in the
acme.com domain except badpc, and
deny access to clients from any other
domain.

AllowHosts=.*\.acme\.com

DenyHosts=badpc\.acme\.com

Deny access to all hosts in the
acme.com domain, including mypc,
and allow access to clients from any
other domain.

DenyHosts=.*\.acme\.com

AllowHosts=mypc\.acme\.com

AllowHosts=.*

Note: Without the final line, no
clients would be allowed access. This
is because once any client is added to
the allow list, clients are allowed
access only if they match an allowed
expression.

Note: You can also configure user-specific and host-specific settings using
subconfiguration files (page 30).

Configuring User Access

Edit the server configuration file (/etc/ssh2/sshd2_config) to control access
to the server. The following keywords configure user access: AllowUsers,
DenyUsers, AllowTcpForwardingForUsers, DenyTcpForwardingForUsers,
ForwardACL, ChrootSftpUsers, UserSpecificConfig. You can specify user
names alone, or use the following syntax to include group and/or host
information:

user[%group][@host]

98 Reflection for Secure IT

Where user is a regular expression for a user (numerical UIDs are not
supported), group is a regular expression for a group, (numerical GIDs are
not supported), and host is a regular expression for host (which can be a
domain name, IP address, or subnet mask). For example, the following
denies access to all members of the interns group at myhost.com:

DenyUsers=.*%interns@myhost.com

Configuring Group Access

Edit the server configuration file (/etc/ssh2/sshd2_config) to control access
to the server. The following keywords configure group access: AllowGroups,
DenyGroups, AllowTcpForwardingForGroups,
DenyTcpForwardingForGroups, ChrootSftpGroups These keywords
support any valid regular expression. Numerical GIDs are not supported.
For example:

DenyGroups=interns

Configuring Client Host Access

Edit the server configuration file (/etc/ssh2/sshd2_config) to control access
to the server. The following keywords configure settings for client host
computers: AllowHosts, DenyHosts, HostSpecificConfig. You can specify
hosts using either IP addresses or domain names. The server first tries to
match using the IP address of the client. If that fails, it tries to match using
a domain name.

Note: The ResolveClientHostname setting controls whether the server
attempts to resolve the client IP address to a domain name, and the default
is 'yes'. The resolved domain name for a client is the fully qualified domain
name. This means that when you add a host to the allow or deny list using a
domain name, you must either use a fully qualified domain name, or a
regular expression, to ensure that host domain names are handled correctly.
For example, if you deny access to the client "mypc", the client
mypc.myhost.com will be able to connect. You must explicitly deny access to
"mypc\.myhost\.com" or use an expression such as "mypc\..*" to ensure that
this client is denied access.

You can also configure the server to force a match based on IP address. To
force matching to a specific IP address, start the host expression using a
backslash followed by i (\i). For example:

DenyHosts = \i123.45.78.9

To match a range of IP addresses using a CIDR (Classless Inter-Domain
Routing) subnet, start the host expression using a backslash followed by m
(\m). For example:

DenyHosts = \m123.123.0.0/16

Note: If you use either \i or \m regular expressions are not supported
within the IP address.

 Chapter 9 Controlling Access and Authorization 99

Notes

 To configure localhost in any allow or deny list, include IP addresses for
all external interfaces and also the local loopback address (127.0.0.1 and
0:0:0:0:0:0:0:1).

 To configure addresses in any allow or deny list, both IPv4 and IPv6
addresses must be specified. This is particularly important if you are
configuring a deny list to ensure that access is blocked.

Debug Logging and Auditing

In this Chapter

Client Debugging 101

Server Debugging 102

Auditing (Message Logging) 103

Solaris Audit Support 105

Reflection for Secure IT logs can provide you with detailed information to
help in troubleshooting. The information included in the client log is
different from that in the server log, and it is often useful to have both.

Client Debugging

You can configure debugging on the ssh, sftp, and scp command line. You
can also configure debugging that applies to all of these session types in the
client configuration file (/etc/ssh2/ssh2_config).

Command Line Options

Use the following command-line options to configure client-side debugging.

Option Used by Description

-d debug_level ssh, ssh-agent Sets the debug level. Increasing the value
increases the amount of information displayed.
Use 1, 2, 3, or 99. (Values 4-98 are accepted,
but are equivalent to 3.)

-D debug_level scp, sftp Equivalent to ssh -d.

Note: scp and sftp use an uppercase D.

-v ssh, scp, sftp Sets the debug level to verbose mode, which is
equivalent to setting the debug level to 2.

-q ssh Enables quiet mode, which causes all warning
and diagnostic messages, including banners, to
be suppressed.

C H A P T E R 1 0

102 Reflection for Secure IT

Configuration File Keywords

You can configure the following settings in the client configuration file.
(The global file is /etc/ssh2/ssh2_config; the user-specific file is
~/.ssh2/ssh2_config.)

Keyword Description

LogLevel Sets the verbosity level for messages sent to the facility specified by
SyslogFacility.

QuietMode Causes all warning and diagnostic messages, including banners, to be
suppressed.

VerboseMode Sets the debug level to 'verbose' mode. Equivalent to -v and LogLevel
= verbose.

SyslogFacility Specifies the facility code used for logging ssh, sftp, and scp messages.
The default value is USER. Set the value to 'none' to disable client
auditing.

Server Debugging

Server event messages can arise from different sources and be controlled by
different configuration options. The following table summarizes sshd
command-line options and server configuration keywords that affect
logging; and describes where to find the output.

To Use Output Location Notes

Debug a single
client
connection

-d debug_level stderr Use 1, 2, 3, or 99. (Values 4-
98 are accepted, but are
equivalent to 3.) With this
option, sshd terminates after
the first client connection
closes.

This option is independent of
the setting for LogLevel.

Enable
persistent
debugging

-D debug_level /etc/ssh2 A debug file is created using
the following file name
format:
debugYYMMDD_HHMMSS_uniqueID.

This option is independent of
the setting for LogLevel.

Suppress debug
messages

-q
QuietMode

N/A — affects
syslog output only

This option overrides
LogLevel.

View server
startup
messages

LogLevel stderr Output to stderr includes
errors and warnings found
while parsing sshd2_config.

 Chapter 10 Debug Logging and Auditing 103

Auditing (Message Logging)

The Reflection for Secure IT server provides the following auditing services,
which are always enabled.

 Login history

 Currently logged in users

 Failed logins

Output locations are platform-dependent. For details refer to the following
table.

Platform Login history Current login Failed login

HPUX (11.11, 11.23)
PARISC

/var/adm/wtmp /etc/utmp /var/adm/btmp

HPUX (11.23, 11.31)
Itanium

/var/adm/wtmps /etc/utmpx /var/adm/btmps

AIX 5.2, 5.3, 6.1 /var/adm/wtmp
/etc/security
/lastlog

/etc/utmp /etc/security/
failedlogin

/etc/security/
lastlog

Solaris 8, 9, 10 /var/adm/wtmpx /var/adm/utmpx /var/adm/
loginlog

RHEL 3, 4, 5 /var/log/lastlog

/var/log/wtmp

/var/run/utmp /var/log/btmp

SLES 9, 10 /var/log/wtmp /var/run/utmp /var/log/btmp

Notes:

 Some platforms write to more than one file.

 On some Linux systems, btmp is not present. The server writes to this
database if it is present.

104 Reflection for Secure IT

Keywords for Configuring Auditing

The output for sshd and sftp-server messages is affected by both Reflection
for Secure IT configuration and syslogd configuration. For example, the
following entry in /etc/syslog.conf configures a facility called local6 and
sends output from that facility to /var/adm/rsit_log.

local6.info /var/adm/rsit_log

Note: The syntax shown above requires a tab between the two entries.

To configure Reflection for Secure IT to send sshd messages to the local6
facility, include the following line in the server configuration file
(/etc/ssh2/sshd2_config).

SysLogFacility local6

The table below summarizes keywords used for configuring auditing.

To Use Notes

Specify a facility code
for sshd messages

SyslogFacility The default is 'AUTH'.

The value of SyslogFacility must
correspond to a facility specified in
syslog.conf.

Specify a facility code
for sftp-server
messages

SftpSysLogfacility When no value is configured (the
default) sftp-server uses the current
facility configured for sshd.

Use SftpSysLogFacility to specify an
alternate facility for sftp server
logging. Sending sftp messages to a
different facility is often useful for
auditing.

The value of SftpSysLogFacility must
correspond to a facility specified in
syslog.conf.

Specify which
categories of sftp
server messages are
sent to the facility
specified by
SftpSysLogFacility.

SftpLogCategory The default is
'loginlogout,directorylistings,download
s,modifications,uploads', which
configures logging of all categories.
You can specify any of those options,
plus 'all', or 'none'.

 Chapter 10 Debug Logging and Auditing 105

To Use Notes

Specify the level of
logging to
SysLogFacility and
SftpSysLogFacility.

LogLevel After the configuration file is read,
messages are processed according to
rules defined in syslog.conf.

This level applies to both sshd and
sftp logging.

Solaris Audit Support

The Solaris operating environment supports auditing of system events, such
as file access, process operations and network activity. With auditing
enabled, the system provides an audit trail of selected events in the form of
a log file, which can be monitored to detect unauthorized use of the system.
Auditing in the Solaris operating environment is provided by the Basic
Security Module (BSM). Refer to the Solaris documentation for
information about configuring BSM.

To generate audit records for Secure Shell connections

1 Verify that the Secure Shell (SSH) audit events are mapped to the
correct audit class. The following line in the /etc/security/audit_event
file defines that all Secure Shell events will belong to the login/logout
class of events:

6172:AUE_ssh:login - ssh:lo

Note: If you are running Solaris 8, this entry does not exist, but must be
added manually.

2 Edit the /etc/security/audit_control file, which lets you define a
system-wide audit setting for all users. Add the login/logout event class
to the flags: section:

flags:lo

3 (Optional) If some users need special audit settings, or you want to
remove auditing for only some users, you can edit the
/etc/security/audit_user file. The entries are of the following form:

user:always_audit-flags:never_audit_flags

For example, the following entry in the /etc/security/audit_user file
disables auditing for a user ‘joe’:

joe::lo

106 Reflection for Secure IT

To view the audit log

1 Locate the audit log in:

/var/audit

2 Use the praudit command to read the binary file format:

praudit audit_file

The audit entry for the Secure Shell login/logout events tells which user
attempted to log in or out, from which host, and whether the connection
succeeded or not.

Example 1

An entry for a user ‘joe’, logging on from host sphinx.company.com:

header,94,2,login - ssh,,Tue May 13 10:49:44 2010, + 863 msec

subject,joe,joe,other,joe,other,7763,7763,0 2805 sphinx.company.com

text,sshd login joe on /dev/pts/4

return,success,0

In this case, the user successfully logged on to the system, and was given a
Secure Shell terminal session on /dev/pts/4.

Example 2

For Secure Shell logins not requiring a terminal session, such as remote
commands or file transfers with scp or sftp, the terminal or tty number is
replaced by the command the server executes on behalf of the user. For
example:

header,116,2,login - ssh,,Tue May 13 10:49:58 2010, + 361 msec

subject,joe,joe,other,joe,other,7774,7774,0 2806 sphinx.company.com

text,sshd login joe on (no tty)

text,remote command: sftp

return,success,0

Example 3

An example of a failed login attempt:

header,81,2,AUE_ssh,,Tue May 13 11:22:51 2003, + 462 msec

subject,joe,joe,other,joe,other,8006,8006,0 0 sphinx.company.com

text,invalid password

return,failure: Interrupted system call,-1

Troubleshooting

In this Chapter

Troubleshooting Public Key Authentication 107

Troubleshooting Slow File Transfer Speed 109

Troubleshooting Public Key Authentication

The Problem: Public key authentication is configured, but client users are
unable to connect using public key authentication.

Check the client configuration

1 Confirm that there is a private/public key pair on the client and note
the name and location of the private key.

2 Open the client configuration file. (If the user has a user-specific file,
check both the global and user file.)

• Confirm that AllowedAuthentications includes 'publickey.'

• Check the IdentificationFile setting. Note the name and location of
the file. (The default is ~/.ssh2/identification).

3 Open the identification file

• Confirm that this file includes a line that identifies the client's
private key. For example:
IdKey /home/joe/mykey

• Confirm that the key name exactly matches the private key of the
key pair. (For example, if your private key has a file extension, this
extension needs to be included.)

• If no path is specified, confirm that the keys are located in the
Secure Shell user directory (~/.ssh2/)

C H A P T E R 1 1

108 Reflection for Secure IT

4 Check file and directory permissions. (The second and third bullet items
are required if StrictModes is enabled on the client, which is the
default.)

• Is the private key readable only by the owner (600)?

• Is the identification file configured to allow write-access only to the
user (600 or 644)?

• Are the user directory and all parent directories configured to allow
write access only to the user (755 or less)?

Check the server configuration

1 Confirm that there's a copy of the user's public key in the user-specific
configuration directory on the server. The default location is ~/.ssh2.

2 Open the server configuration file.

• Confirm that AllowedAuthentications includes 'publickey.'

• Check the AuthorizationFile setting. Note the name and location of
the file. (The default is ~/.ssh2/authorization.)

3 Open the authorization file.

• Confirm that this file includes a line that identifies the server's copy
of the client's public key. For example:
Key /home/joe/mykey.pub

• Confirm that the key name exactly matches the public key, including
the file extension.

• If no path is specified, confirm that the key is located in the Secure
Shell user directory. (The default is ~/.ssh2/. This is configurable on
the server with the UserConfigDirectory keyword.)

4 Check file and directory permissions. (The second bullet item is required
if StrictModes is enabled on the server, which is the default.)

• Is the authorization file configured to allow write-access only to the
user (600 or 644)?

• Are the user directory and all parent directories configured to allow
write access only to the user (755 or less)?

 Chapter 11 Troubleshooting 109

Troubleshooting Slow File Transfer Speed

File transfer speed can be affected by number of factors, including the CPU
power of your client and server systems, available bandwidth (page 219) for
transfers, and latency (page 220) in your network. In most cases, you'll see
the best performance using the Reflection for Secure IT default settings. In
some cases, the following settings may affect transfer speeds.

Check compression settings

You can configure compression on both the client and server using the
Compression keyword. You can specify compression values 0-9. The default
value for the server is 6. The default value for the client is 0. Increasing the
value increases the amount of compression. Using higher values results in
the use of less network bandwidth, but at the cost of more CPU cycles.

 Lowering the Compression value or setting it to zero may improve
performance if your files are already compressed, if your network
bandwidth is large, or if your computer has limited CPU power.

 Increasing the Compression value may improve performance if your files
are uncompressed, network bandwidth is small, or your CPU is not a
limiting factor.

Check smart copy and checkpoint resume settings

Smart copy and checkpoint resume (page 76) help minimize the amount of
time spent repeating unnecessary transfer of data. These features use a
series of hashes sent between the client and server to determine if part or
all of a file is identical. Identical content is not transferred. This
functionality is enabled by default. If you transfer files in a high latency
network, the time required to send the hash values across the network can
cause delays that exceed the benefit of using these features.

 If you transfer large files across a high latency network, you may be able
to improve performance by disabling the smart copy and checkpoint
resume feature. To disable these features from the client, set
SmartFileCopy and CheckpointResume to no. To disable these features
from the server, set SmartFileTransfer to no.

Check High Performance Network (HPN) settings

Reflection for Secure IT supports HPN features that maximize file transfer
performance. This functionality is enabled by default.

 To ensure best performance, confirm that HPNDisabled is set to 'no'
(the default) on both the client and server.

Appendix

In this section

Files Used by the Client 112

Files Used by the Server 114

Client Configuration Keywords 118

Server Configuration Keywords 132

File and Directory Permissions 151

ssh Command Line Options 154

ssh Escape Sequences 161

ssh Exit Values 162

ssh-keygen Command Line Options 163

scp Command Line Options 167

sftp Command Line Options 172

Supported sftp Commands 176

ssh-add Command Line Options 181

ssh-agent Command Line Options 183

sshd Command Line Options 185

ssh-certview Command Reference 187

ssh-certtool Command Reference 189

winpki and pkid Command Reference 193

pkid_config Configuration File Reference 197

pki_mapfile Map File Reference 203

Sample Mapping Rules 210

Sample Map File with RuleType Stanzas 212

PKI Settings Migration 213

PKI Services Manager Return Codes 216

Files Used by the Client
$HOME/.ssh2/ssh2_config

User-specific configuration file. The format is the same as the system-
wide configuration file. Recommended permissions = 644.

/etc/ssh2/ssh2_config

System-wide configuration file. This file is installed when you install
Reflection for Secure IT. The installed file shows default values as
commented out lines. Edit this file to change system-wide settings. For
information about keywords and supported values, see ssh2_config(5).
Recommended permissions = 644.

$HOME/.ssh2/hostkeys/key_*.pub

This directory contains the public keys of hosts trusted by the current
user. By default, keys are added automatically to this location when the
user answers 'yes' in response to an unknown host prompt. (This
behavior can be changed using the StrictHostKeyChecking keyword in
the configuration file.) Starting with version 7.0, host keys use the
following file name format:

key_port_host,IP.pub

Where port is the port used for the ssh connection, host is the host
name, and IP is the host IP address.

Earlier versions used key_port_host.pub, and this format is still
supported.

/etc/ssh2/hostkeys/key_*.pub

System-wide known hosts. Hosts with keys in this list are trusted for all
users of the computer. No keys are installed to this location
automatically. To add a system-wide trusted host, create this directory
and put a copy of the host public key in it. Use the file name format
described above for $HOME/.ssh2/hostkeys/key_*.pub.

$HOME/.ssh2/identification

An identification file is required if you use public keys or certificates for
user authentication. (This is the default file name and location. You can
redefine the name and/or location of the identification file on the ssh
command line using -i or in the configuration file using the
IdentificationFile keyword.) The identification file contains a list of one
or more private keys held by a client user. Any listed key can be used by
the client for user authentication. If more than one key is listed, the
client tries the first key in the list, then continues trying the other keys
in order. If no path information is provided, the client looks for listed
keys in $HOME/.ssh2/. This file should have user-only write access
(permissions = 600 or 644).

 A P P E N D I X A

 Appendix A Files Used by the Client 113

For standard keys use the following syntax to add keys to the list:

IdKey <keyname>

For example:

IdKey id_dsa_2048_a

For keys associated with n X.509 certificate use the following syntax.

CertKey <keyname>

The associated certificate must be in the same directory as the specified
key and use the same base name with a .crt file extension.

Note: For public key authentication, you also need to configure the
server. For certificate authentication, you need to install and configure
Reflection PKI Services Manager and also configure the server.

Note: When ChrootSftpUsers or ChrootSftpGroups is enabled,
connected users see additional subdirectories (etc on all platforms and
dev on AIX) added to their home directory. These directories cannot be
moved or deleted. The etc directory contains two required files. The
rsit.conf file identifies the installation location of files required by
Reflection for Secure IT. The localtime file is is needed so that processes
such as logging can get the current time. The system localtime file is in
a location that cannot be accessed by a chrooted user. Users running on
AIX also require /dev/null, which is needed for correct logging to syslog.

Files Used by the Server

The server uses system-wide files (in /etc/ssh2) for all connections. Files in
user-specific directories (~/.ssh2 by default) apply to connections from
individual client users.

System-wide server files

/etc/ssh2/sshd2_config

The global server configuration file. This file must not be writable by
group or other. For file format and supported settings see
sshd2_config(5). Recommended permissions = 644.

/etc/ssh2/hostkey

The default private key of the public/private key pair used to identify
the server to clients. This file should be readable and writable only by
root. This file must be limited to user-only read and write access. If
permissions are not sufficiently restricted, public key authentication will
fail. Recommended permissions = 600.

/etc/ssh2/hostkey.pub

The default public key of the public/private key pair used to
authenticate the server to clients. Recommended permissions = 644.

/etc/ssh2/subconfig

Directory for optional user-specific and host-specific subconfiguration
files. Recommended permissions = 700.

/etc/ssh2/subconfig/<subconfig_file>

User-specific and host-specific subconfiguration files. For details see
SUBCONFIGURATION FILES in sshd2_config(5).

/etc/ssh2/environment

If this file is present, it sets environment variable settings to use for all
Secure Shell client connections to this server. (The keyword
SettableEnvironmentVars controls which environment variables can be
set.) Recommended permissions = 644. Note: Environment variable
settings specified in this file override any values configured in standard
system files such as /etc/default/login and /etc/environment. If the same
environment variable is configured in this global file and also in a user-
specific environment file (~/.ssh2/environment), the user-specific value
overrides the global value. The pound sign (#) marks comment lines.
The syntax is:

environment_variable=value

 A P P E N D I X B

 Appendix B Files Used by the Server 115

/etc/nologin

Limits login to root. If this file exists, only root is allowed to login. The
text of nologin is displayed to anyone else who attempts to log in.

<piddir>/sshd2_22.pid

Contains the PID of the process listening for incoming connections. The
PID directory is determined by your operating system. The port number
(22 by default) encoded in this name is determined by the value of the
Port keyword. You can specify a different name or location using the
PidFile keyword.

/etc/motd

The message-of-the-day file. The text of this file is displayed when a
user logs in. The PrintMotd keyword can be used to turn off this display.

 /etc/ssh2/radius_config

A user-created file listing one or more RADIUS authentication servers.
The file name suggested above is not required. After you create this file,
use the RadiusFile keyword to specify your file name. For each RADIUS
server, you need to enter the name, port, and shared secret.
Recommended permissions = 600. The syntax is:

server1:port1:shared_secret1

server2:port2:shared_secret2

User-specific server files

~/.ssh2

The default directory for user-specific files on the server. (You can
specify a different location with the UserConfigDirectory keyword.)
Recommended permissions = 700.

~/.ssh2/authorization

The default client authorization file. (You can specify a different file
with the AuthorizationFile keyword.) This file is required for Secure
Shell public key authentication of client users. Each user must have an
authorization file in that user's directory. This file must be limited to
user-only write access. If permissions are not sufficiently restricted,
public key authentication will fail. Recommended permissions = 600.

The file contains a list of key files that the server will use during public
key authentication. If the key presented by the client doesn't match any
of the keys listed in the authorization file, public key authentication
fails. Keywords are not case sensitive and the pound sign (#) marks
comment lines. The supported keywords are:

116 Reflection for Secure IT

key

Specifies keys the server will accept for this user. The format for key
entries is "key" followed by the name of a file that contains a public key.
Keys are assumed to be in the user-specific configuration directory
(~/.ssh2 by default) unless you specify an absolute path. For example,
the following lines authorize the user to authenticate using either of the
specified keys.

key mykey.pub

key id_rsa_2048_a.pub

options

Use this optional keyword to specify options that apply to the preceding
key. All options for a given key must be configured on a single line.
White space is allowed. Options must be configured on the line
immediately following the line containing the key. The format is:

Options option_keyword="arg", [option_keyword="arg"],...

Three Options keywords are supported: command, allow-from, and
deny-from

command command

The specified command is executed on the remote host, then the
connection is closed. For example, with this configuration, the script
"myscript" runs whenever mykey.pub is used for authentication.

key mykey.pub

options command="sh myscript"

allow-from IP-address

The key is allowed only for connections from the specified IP address.
For example, the following configuration allows the specified key to be
used only for connections from IP addresses starting with "150." and
"10.10.".

Key /home/joe/.ssh/mykey.pub

options allow-from="150\..*,10\.10\..*"

deny-from IP-address

The key is not allowed for connections from the specified IP address.

Notes: To configure addresses in any allow or deny list, both IPv4 and
IPv6 addresses must be specified. This is particularly important if you
are configuring a deny list to ensure that access is blocked. To configure
localhost in any allow or deny list, include IP addresses for all external
interfaces and also the local loopback address (127.0.0.1 and
0:0:0:0:0:0:0:1).

 Appendix B Files Used by the Server 117

~/.hushlogin

If this file is present, it suppresses display of the user's last login, the
message of the day, and the mail check.

~/.ssh2/environment

If this file is present, it sets environment variables to set for this user at
login. (The keyword SettableEnvironmentVars controls which
environment variables can be set.) Recommended permissions = 644.
Note: Environment variable settings specified in this file override any
values configured in standard system files such as /etc/default/login
and /etc/environment, and also override settings configured in the global
file (/etc/ssh2/environment). The pound sign (#) marks comment lines.
The syntax is:

environment_variable=value

Client Configuration Keywords

You can configure the following settings in the client configuration file.
(The global file is /etc/ssh2/ssh2_config; the user-specific file is
~/.ssh2/ssh2_config.) You can also configure these settings using the -o
option on the ssh command line.

AddressFamily

Specifies which address formats are supported by the client. The allowed
values are 'any' (allow the system to decide which address family to use),
'inet' (accept only IPv4), and 'inet6' (prefer IPv6 but accept IPv4). The
default is 'inet'. You can also configure address family preference using
the -4 and -6 command line options.

AllowedAuthentications

Specifies which authentication methods the client attempts, and the
order in which they are tried. The supported methods are: 'gssapi-
keyex', 'gssapi-with-mic', 'publickey', 'keyboard-interactive', and
'password'. Use a comma-separated list to specify supported methods.
The client attempts authentication methods in order from first to last.
The authentication technique used for the connection is the one highest
in the client order of preference that is also allowed by the server. If the
server is configured to require more than one method, multiple
authentication methods may be needed to establish a connection. To
support automated scripts, the least interactive methods should be
placed first in the list. The default is 'gssapi-with-mic, publickey,
keyboard-interactive, password'.

AuthenticationSuccessMsg

Specifies whether to display the following message when authentication
has been completed successfully: "Authentication successful." The
allowed values are 'yes' and 'no'. The default is 'yes'.

BatchMode

Specifies whether to disable all queries for user input, including
password and passphrase prompts, which is useful for scripts and batch
jobs. If StrictHostKeyChecking is set to 'ask' and BatchMode is set to
'yes', the client assumes a "no" response to all queries about unknown
host keys. The allowed values are 'yes' and 'no'. The default is 'no'.

 A P P E N D I X C

 Appendix C Client Configuration Keywords 119

CheckHostIP

Specifies whether host IP address checking is performed using the host
name and IP address encoded in the public key file name. When a user
accepts a new host key, the key is added to the known hosts store using
the format key_port_host,IP.pub. When CheckHostIP is enabled, host
authentication fails if the actual IP of the specified host doesn't match
the encoded IP address for that host. Enabling this setting helps detect
DNS spoofing if the host key changes. The allowed values are 'yes' and
'no'. The default is 'no'.

Note: Host keys added to the host key store using versions earlier than
v. 7.0 do not include the host IP address. Disable CheckHostIP if you use
keys with the older format.

CheckpointResume

When this setting is 'yes' (the default), interrupted file transfer resumes
at the point of interruption. When this setting is 'no' transfers always
start over. Note: Checkpoint resume can also be disabled on the server
using the SmartFileTransfer keyword.

Ciphers

Specifies one or more (comma-separated) encryption algorithms
supported by the client. The cipher used for a given session is the cipher
highest in the client's order of preference that is also supported by the
server. Allowed values are 'aes128-ctr', 'aes128-cbc', 'aes192-ctr', 'aes192-
cbc', 'aes256-ctr', 'aes256-cbc', 'blowfish-cbc', 'arcfour', 'arcfour128',
'arcfour256', 'cast128-cbc', and '3des-cbc'.

You can also set this value to 'none'. When 'none' is the agreed on
cipher, data is not encrypted. Note that this method provides no
confidentiality protection, and is not recommended.

The following values are provided for convenience: 'aes' (all supported
aes ciphers), 'blowfish' (equivalent to 'blowfish-cbc'), 'cast' (equivalent to
'cast128-cbc'), '3des' (equivalent to '3des-cbc'), 'Any' or 'AnyStd' (all
available ciphers plus 'none'), and 'AnyCipher' or 'AnyStdCipher' (all
available ciphers).

You can also specify encryption algorithms on the ssh command line
using the -c option. The default is 'AnyStdCipher'.

ClearAllForwardings

Clears any local, remote, or dynamically forwarded ports that have
already been processed from either a configuration file or the command
line. The allowed values are 'yes' and 'no'. The default is 'no'. Note: scp
and sftp clear all forwarded ports automatically regardless of the value
of this setting.

120 Reflection for Secure IT

Compat.RSA.HashScheme

Specifies whether the MD5 hash algorithm is supported for verifying the
digital signature for RSA keys used in public key or X.509 certificate
authentication. The allowed values are 'yes' and 'no'. When this keyword
is set to 'no' (the default), only signatures with SHA-1 hashes are
accepted. When it is set to 'yes' signatures with either SHA-1 or MD5
hashes are accepted.

Compression

Specifies the level of compression. You can specify compression values 0-
9. Increasing the value increases the amount of compression. Using
higher values results in the use of less network bandwidth, but at the
cost of more CPU cycles. Level 6 is equivalent to 'yes'. Level 0 is
equivalent to 'no'. The default is 'no' (0).

Note: Compression can be disabled on the ssh command line using the -
C option, but can only be enabled using this keyword.

ConnectionReuse

Specifies whether new ssh , scp , and sftp sessions can reuse an
established connection. This feature allows you to start new sessions
without having to reauthenticate. The allowed values are 'yes' and 'no'.
The default is 'no'. When set to 'yes', a new session reuses an existing
tunnel if the target host, port, and user are all identical to those used for
the established connection. When set to 'no', the client establishes a new
connection for each session, which means that each new connection
repeats the authentication process and also applies any modified
connection-specific settings (such as forwards and ciphers).

Note: Connection reuse may fail if the server administrator has
configured restricted directory access using ChrootSftpGroups or
ChrootSftpUsers.

ConnectionTimeout

Specifies the maximum time (in seconds) that the client waits when
trying to connect to the server. The default is set to 0 (zero), which
means that the client sets no limit and the actual limit is determined by
the operating system.

 Appendix C Client Configuration Keywords 121

DefaultDomain

Specifies a default domain name. You can add this setting to your
configuration file if you want to be able to enter a short host name on
the command line, but send a fully qualified domain name to make the
connection. If you have configured a value for DefaultDomain and you
enter a host name that doesn't contain any "." (dot) characters, the
DefaultDomain value is concatenated to the host name using a "."
character. (Note: You can include an optional dot at the beginning of the
DefaultDomain string; the first "." in this string is ignored.) Any alpha-
numeric character is accepted as a value. For example, if DefaultDomain
is set to either "acme.com" or ".acme.com", the command "ssh joe@myhost" is
sent as "ssh joe@myhost.acme.com".

DontReadStdin

Redirects stdin from /dev/null, which prevents reading from stdin. You
can also configure this on the ssh command line using the -n option. The
allowed values are 'yes' and 'no'. The default is 'no'.

EscapeChar

Sets the escape character for the terminal session. The default character
is a tilde (~). Setting the escape character to 'none' means that no escape
character is available and the tilde acts like any other character. For
details, see ESCAPE SEQUENCES in the ssh man page. You can also
set the escape character on the ssh command line using the -e option.

ExitOnForwardFailure

Specifies whether ssh terminates the connection if all requested
dynamic, local, and remote port forwardings cannot be configured. The
allowed values are 'yes' and 'no'. The default is 'no'.

FileCopyAsciiExtensions

Specifies which file types use ASCII transfer during sftp sessions when
auto mode transfer is enabled. All other files use binary transfer. Specify
a comma or space-separated list. Wildcard (zsh-glob) characters are
supported. Don't precede file extensions with a period. To specify
extensions containing spaces, use quotation marks around the extension
or use a backslash as an escape character. The default is 'txt, htm*, pl,
php*'. (You can use the setext during an sftp session to specify a
different file list for that session. Use getext to display the current list.)

Note: This setting is only relevant when auto transfer is enabled. The
transfer method is set to binary by default. To enable auto transfer, use
the sftp command "auto". To display the current transfer mode, use
"ascii -s".

FipsMode

Specifies whether all connections will be made using security protocols
and algorithms that meet FIPS 140-2 standards. The allowed values are
'yes' and 'no'. The default is 'no'.

122 Reflection for Secure IT

ForcePTTYAllocation

Forces a tty allocation even if a command is specified. The allowed
values are 'yes' and 'no'. The default is 'no'. You can also configure this
on the ssh command line using the -t option.

ForwardAgent

Specifies whether a connection to the authentication agent (if
established) is forwarded to the remote machine. The allowed values are
'yes' and 'no'. The default is 'yes'.

ForwardX11

Enables X11 connection forwarding and treats X11 clients as untrusted.
Untrusted remote X11 clients are prevented from tampering with data
belonging to trusted X11 clients. The allowed values are 'yes' and 'no'.
The default is 'yes'. You can also configure this on the ssh command line
using the -X option.

GatewayPorts

The gateway ports setting controls whether locally forwarded ports are
available to remote applications. By default this setting is not enabled,
and the client uses the loopback address ("localhost" or 127.0.0.1) when
it opens a socket for local port forwarding. This prevents applications
running on other computers from connecting to the forwarded port.
When you enable gateway ports, a remote application client can open a
socket using the Secure Shell client's Ethernet address (such as an IP
address, a URL, or a DNS name). For example, a Secure Shell client
running on acme.com might be configured to forward port 8088. When
gateway ports are not enabled, the forwarded socket is localhost:8088.
When gateway ports are enabled, the forwarded socket is
acme.com:8088. The allowed values are 'yes' and 'no'. The default is 'no'.
You can also configure this on the ssh command line using the -g option.

Caution: This option should be used with extreme caution (and never
with Internet-facing network adapters), because the client performs no
authentication of remote host connections. If the application to which
this connection is forwarded does not perform its own authentication,
then all remote hosts connections are allowed unrestricted access to
that application.

 Appendix C Client Configuration Keywords 123

GoBackground

Use this keyword when you have configured port forwarding and you
want the Secure Shell session to run in the background. The allowed
values are 'yes', 'no', and 'oneshot'. The default is 'no'. If at least one port
forwarding rule is configured, both 'yes' and 'oneshot' send the session to
the background after authentication is complete. When you specify 'yes',
the Secure Shell session remains in the background and continues to
accept forward requests indefinitely until you manually kill the process.
(This is equivalent to using -f on the ssh command line.) When you
specify 'oneshot', the background session waits for only one forwarded
connection to occur and exits as soon as the forwarded connection is
closed. (This is equivalent to using -fo on the ssh command line.)

GSSAPIDelegateCredentials

Specifies whether to forward (delegate) GSSAPI credentials to the
server. The allowed values are 'yes' and 'no'. The default is 'yes'.

Host

Specifies the actual host name or IP address to use for a connection. The
default is an empty string. This keyword can be used in combination
with a host stanza expression to create an alternate name for connecting
to a host. When this keyword appears outside any stanza, it can be used
to specify a default host for the connection.

HostCA

This keyword is deprecated. It is a synonym for TrustAnchor.

HostCANoCRLs

This keyword is deprecated. It is a synonym for TrustAnchor. Note:
Certificate revocation checking cannot be configured using the
Reflection for Secure IT configuration file. Use Reflection PKI Services
Manager to configure revocation checking.

HostCertNameCheck

Specifies whether server authentication using a certificate requires host
name checking. When HostCertNameCheck is 'yes', authentication
succeeds only if the host name or IP address specified for the connection
is included in the allowed identity set for the certificate. (Use the PKI
Services Manager map file to configure allowed identities.) When
HostCertNameCheck is 'no', the client ignores the allowed identity set
and accepts any valid certificate. When HostCertNameCheck is 'ask'
(the default), the user receives a prompt when the server name is not an
allowed identity, and is asked whether or not to continue.

124 Reflection for Secure IT

HostKeyAlgorithms

Specifies, in order of preference, the host key algorithms proposed by
the client. This setting is useful when the server is configured for both
certificate and standard host key authentication. Secure Shell protocol
allows only one attempt to authenticate the host. If the host presents a
certificate, and the client is not configured for host authentication using
certificates, the connection fails. (This is different from user
authentication in which multiple authentication attempts are
supported.) The default is 'x509v3-sign-rsa,x509v3-sign-dss,ssh-rsa,ssh-
dss'.

HostKeyAlias

Specifies an alias to use instead of the real host name when a host key is
saved to the client's directory of known host keys. Host keys are stored
using this naming format: key_port_host,IP.pub. The value you specify
replaces the host portion of the stored host key name. This option is
useful for tunneling Secure Shell connections, or when multiple servers
are running on a single host.

HPNDisabled

Specifies whether Reflection for Secure IT uses HPN dynamic TCP
window features to enhance performance. When HPNDisabled = 'no'
(the default), Reflection for Secure IT adjusts the TCP window and TCP
receive buffers to optimize performance. When HPNDisabled is 'yes', the
receive buffer is set to 64 KB.

IdentificationFile

Specifies an alternate identification file to use for public key
authentication. The file location is assumed to be in the current working
directory unless you specify a fully-qualified or relative path. The default
identity file is ~/.ssh2/identification. For details, see the FILES section
below. You can also configure this on the ssh command line using the -i
option.

IdentityFile

This keyword is deprecated. It is the equivalent of IdentificationFile.

KeepAlive

Specifies whether the client sends TCP keep-alive messages to the
server. This keyword is deprecated. Use ServerAliveInterval instead.
The allowed values are 'yes' and 'no'. The default is 'yes'.

KEXs

Specifies which key exchange algorithms the client supports. Supported
values are 'diffie-hellman-group1-sha1' and 'diffie-hellman-group14-
sha1'. Multiple algorithms can be specified as a comma-separated list.
The default value is 'diffie-hellman-group14-sha1,diffie-hellman-group1-
sha1'.

 Appendix C Client Configuration Keywords 125

LibGssKrb5

Use this setting if you use GSSAPI (Kerberos 5) authentication. It
specifies the fully-qualified path to the Kerberos library called
libgssapi_krb5.so

LocalForward

Use this keyword to forward connections from an arbitrary port on the
client through the secure tunnel. The syntax for configuring this setting
is:

[protocol/][listening_host:]listening_port:host:hostport

When a Secure Shell connection is established, the Secure Shell client
opens a socket on the Secure Shell client host using the designated local
port (listening_port). (On client hosts with multiple interfaces, use
listening_host to specify which interface.) Configure your application
client (the one whose data you want to forward) to send data to the
forwarded socket (rather than directly to the destination host and port).
When that client establishes a connection, all data sent to the forwarded
port is redirected through the secure tunnel to the Secure Shell server,
which decrypts it and then directs it to the destination socket
(host,hostport). Unless the gateway ports option is enabled, the
forwarded local port is available only to clients running on the same
computer as the Secure Shell client. The optional protocol can be tcp or
ftp.

Note: If the final destination host and port are not on the Secure Shell
server host, data is sent in the clear between the Secure Shell host and
the application server host.

The following example uses local forwarding to secure e-mail
communications between a mail client running on the same computer as
the Secure Shell client and a mail server running on the same computer
as the Secure Shell server. The local mail client is configured to send
communications to local port 14300. Data received on port 14300 is
forwarded through the secure tunnel to the server, where it is
redirected to port 143.

LocalForward=14300:localhost:143

In the following example, FTP communications sent from an FTP client
(on the same computer as the Secure Shell client) are forwarded to an
FTP server running on myhost.com. With this configuration, you would
configure the FTP client to connect to localhost:2121.

LocalForward=ftp/2121:myhost.com:21

You can also configure local forwarding on the ssh command line using
the-L option.

126 Reflection for Secure IT

LogLevel

Sets the verbosity level used for ssh messages. Allowed values are 'fatal',
'error', 'quiet', 'info', 'verbose', 'debug1' ('debug' and 1 are equivalent),
'debug2' (2 is equivalent), 'debug3' (3 is equivalent), and 'trace' ('debug99'
and 99 are equivalent). The syslog level associated with these values is
CRIT for fatal, ERROR for error and quiet, INFO for info and verbose,
and DEBUG for debug1, debug2, debug3, and trace. The default is 'info'.

Note: Setting logging to 'trace' can increase your security risk. At this
level, information leakage is a concern, as unencrypted protocol
information may be written out. Also, the volume of information written
may fill up disk space rapidly, potentially causing the host or Reflection
for Secure IT to stop responding.

MACs

Specifies which MACs (message authentication codes) are supported by
the client. Allowed values are 'hmac-sha1', 'hmac-sha1-96', 'hmac-md5',
'hmac-md5-96', 'hmac-ripemd160', 'hmac-sha256', and 'hmac-sha512'.
Use 'AnyMac' to support all of these. Use 'AnyStdMac' to support
'hmac-sha1', 'hmac-sha1-96', 'hmac-md5', and 'hmac-md5-96'. Additional
options are 'none', 'any' (equivalent to AnyMac plus 'none'), and 'AnyStd'
(equivalent to 'AnyStdMac' plus 'none'). Multiple MACs can also be
specified as a comma-separated list. When 'none' is the agreed on MAC,
no message authentication code is used. Because this provides no data
integrity protection, options that include 'none' are not recommended.

You can also configure MACs on the ssh command line using the -m
option. The default is 'AnyStdMac'.

NoHostAuthenticationForLocalHost

This option disables host authentication when the client connects to
localhost. It is useful when the home directory is shared across
computers. In this situation localhost will refer to a different host on
each of the computers, and the client user will get many warnings about
changed host keys. Setting this to 'yes' disables authentication for
localhost so the user won't see these warnings. The allowed values are
'yes' and 'no'. The default is 'no'.

NumberOfPasswordPrompts

Specifies the number of password prompts to respond to before giving
up. Note: The server can also set a maximum number of allowed
password attempts. If you set NumberOfPasswordPrompts to a larger
value than is configured by the server, the connection will fail when the
server limit is reached. The default is 3.

PasswordPrompt

Specifies the prompt to display for password authentication. Two
variable options are supported: %r is replaced by the user name and %h is
replaced by the host name. The default is "%r@%h's password:" (This
setting has no effect on keyboard-interactive authentication.)

 Appendix C Client Configuration Keywords 127

PkidAddress

Specifies the port used to connect to PKI Services Manager. Use the
format host:port. The default is localhost:18081. If you specify a host and
omit the port, the default PKI Services Manager port (18081) is used.

PkidPublicKey

Specifies the name and location of the public key used by to confirm the
identity of Reflection PKI Services Manager. The default is
/opt/attachmate/pkid/config/pki_key.pub.

Port

Specifies the port to connect to on the server. The default is 22, which is
the standard port for Secure Shell connections. You can also configure
this on the ssh command line using the -p option.

ProxyCommand

Specifies the command to use to connect to the server. The command
string extends to the end of the line, and is executed with the user's
shell. Two variable options are supported in the command: '%h' is
replaced by the host name and '%p' by the port. The command can be
anything that reads from stdin and writes to stdout. The command
should eventually connect to a Reflection for Secure IT server. You can
use ProxyCommand in conjunction with a command such as nc (or
netcat) that provides proxy support. For example, the following
command uses nc to connect via an HTTP proxy at 198.168.2.1:

ProxyCommand /usr/bin/nc -X connect -x 198.168.2.1:8080 %h %p

The default is 'none', which disables this option. (This is equivalent to
specifying an empty string).

Note: CheckHostIP, is not available for connections made with a proxy
command.

QuietMode

Enables quiet mode, which causes all warning and diagnostic messages,
including banners, to be suppressed. The allowed values are 'yes' and
'no'. The default is 'no'. You can also configure this on the ssh command
line using the -q option.

RekeyIntervalSeconds

Specifies the number of seconds the client waits before initiating a
negotiation for a new session key. The value must be an integer. The
default is 3600. This key can be used in combination with RekeyLimit, in
which case the client initiates a new key exchange whenever the first
limit is reached.

128 Reflection for Secure IT

RekeyLimit

Specifies the maximum amount of data that can be transmitted before
the client initiates a negotiation for a new session key. The argument is
the number of bytes, with an optional suffix of 'K', 'M', or 'G' to indicate
kilobytes, megabytes, or gigabytes, respectively. Set this value to 0 (zero)
to use the default value. The default is between '1G' and '4G', depending
on the cipher. This key can be used in combination with
RekeyIntervalSeconds, in which case the client initiates a new key
exchange whenever the first limit is reached.

RelaySignals

Specifies which signals the client should relay to the server.
RelaySignals accepts a comma-separated list of any of the following
signals: ABRT, ALRM, FPE, HUP, ILL, INT, PIPE, QUIT, SEGV,
TERM, USR1, USR2. The signals KILL and STOP cannot be caught,
blocked, or ignored, so these signals are not supported. No signals are
relayed by default.

RemoteForward

Use this keyword to forward connections from an arbitrary port on the
server through the secure tunnel. The syntax for configuring this setting
is:

[protocol/][listening_host:]listening_port:host:hostport

When the Secure Shell connection is established, the Secure Shell server
opens a socket on its host (the computer running the Secure Shell
server) using the designated remote port (listening_port). (On server
hosts with multiple interfaces, use listening_host to specify which
interface.) Configure your client application (the one whose data you
want to forward) to send data to the forwarded socket (rather than
directly to the destination host and port). When that client establishes a
connection, all data sent to the forwarded port is redirected through the
secure tunnel to the Secure Shell client, which decrypts it and then
directs it to the destination socket (host,hostport). The optional protocol
can be tcp or ftp.

In the following example, FTP communications sent from an FTP client
(on the same computer as the Secure Shell server) are forwarded to an
FTP server (on the same computer as the Secure Shell client). With
this configuration, you would configure the FTP client to connect to port
3333.

RemoteForward=ftp/3333:localhost:21

You can also configure remote port forwarding on the ssh command line
using the -R option.

 Appendix C Client Configuration Keywords 129

SendNOOPPackets

Specifies whether the client sends NOOP messages through the Secure
Shell channel to the server. Setting this to 'yes' is equivalent to setting
ServerAliveCountMax to 3 and ServerAliveInterval to 600. The allowed
values are 'yes' and 'no'. The default is 'no'.

ServerAliveCountMax

Use this setting to close sessions to servers that have become
unresponsive. It is relevant only when ServerAliveInterval is set to a
non-zero value. ServerAliveCountMax sets the maximum number of
server alive messages the client will send without receiving a return
message from the server. When this threshold is reached, the client
terminates the session. The default is 3. For example, if
ServerAliveInterval is set to 600, and ServerAliveCountMax is 3, the
client sends a message to the server every 10 minutes until it has sent 3
messages to the server without response. This means that the client will
close an unresponsive connection after about 30 minutes.

ServerAliveInterval

Sets a time interval, in seconds, for sending NOOP messages to the
server through the Secure Shell channel. The client sends a message to
the server when no data has been received from the server during the
specified interval. Setting this to a non-zero value can be used to inform
the Secure Shell server and the TCP stack that the client is still alive,
inform all networking hardware (such as routers and NATs) that the
Secure Shell connection is still active, and detect network problems and
application problems. Use this setting in conjunction with
ServerAliveCountMax to terminate a connection to a server that has
become unresponsive. The default is 0; which configures the client to
send no messages.

SetRemoteEnv

Specifies an environment variable to set on the server before executing a
shell or a command. The value should be in the form: VAR=val, where val
can be empty. The argument must be uppercase.

Note: Values set with this keyword are cumulative; you can set multiple
variables by configuring this keyword multiple times in one or more
configuration files.

SmartFileCopy

Specifies whether Reflection for Secure IT checks for identical files
before doing a file transfer. When this setting is 'yes' (the default),
existing files are checked for equality and no data transfer takes place if
the files are identical. When this setting is 'no', no check for equality is
made and existing files are always overwritten. Note: Smart file copy
can also be disabled on the server using the SmartFileTransfer keyword.

130 Reflection for Secure IT

StrictHostKeyChecking

This keyword determines how the client behaves when a host presents
an unknown key for authentication. The possible values are:

'yes' - Connections succeed only when host keys have been manually
copied to the user's host key directory (~/.ssh2/hostkeys), or the system-
wide host key directory (/etc/ssh2/hostkeys). The client does not add
host keys to the user's computer. This is the most secure option.

'ask' - This is the default. The client displays a prompt asking if the user
wants to accept a key from an unknown host. This prompt shows the
host key fingerprint, which can be used to verify the host's identity. If
the user answers 'yes', the client adds the host key to the known host
keys in the user's directory (~/.ssh2/hostkeys) and uses this key to verify
the host's identity in subsequent connections.

'no' - Unknown host keys are added automatically to the user's host key
directory (~/.ssh2/hostkeys) and used to verify the host's identity in
subsequent connections. The user never knows when an unknown host
key is presented.

StrictModes

Specifies file and directory permissions required for public key
authentication. The allowed values are 'yes' and 'no'. The default is 'yes'.
When set to 'yes', the user directory (~/.ssh2/) and all parent directories
must be writable and executable only by the user (mode 755 is accepted).
Recommended permissions for the user directory = 700. The user
identification file (~/.ssh2/identification by default) must be configured
for user-only read/write access (600 is recommended, 644 is accepted).
When set to 'no' these file permissions are not enforced and sensitive
files and information could be compromised.

Note: Additional file permission restrictions are enforced for all private
keys. Keys must be configured for user-only read access regardless of
the current StrictModes setting. If access to the private key is not
sufficiently restricted, public key authentication will always fail.
Recommended permissions for private keys = 600.

SysLogFacility

Specifies the facility code used to log messages for ssh, sftp, and scp
connections. The default is 'USER'. When this value is 'none', Reflection
for Secure IT disables logging to syslog. Other valid values are platform-
dependent. See syslog(3) and syslog.conf(5).

 Appendix C Client Configuration Keywords 131

TrustAnchor

This keyword is optional and is relevant only if you use certificates for
server authentication. By default, Reflection PKI Services Manager
validates certificates presented for authentication using all of the trust
anchors you have configured. Use this keyword to limit which of the
Reflection PKI Services Manager trust anchors can be used for
certificate validation. You can specify either Subject DN (Distinguished
Name) from a certificate available in the PKI Services Manager store,
or use the file name of a certificate. Note that the specified trust
anchors must be also be configured for Reflection PKI Services Manager
(using the PKI Services Manager TrustAnchor keyword).

TrustX11Applications

Specifies whether the X server treats forwarded X11 client applications
as trusted. The allowed values are 'yes' and 'no'. The default is 'no'. Set
this to 'yes' to give remote X11 clients full access to the X11 display.
When this is set to 'no', X11 applications are treated as untrusted. This
avoids the risk created when a connection to a compromised host allows
applications on that host to "sniff" input operations using the forwarded
X11 connection.

User

Specifies the user name for the remote server. You can configure
different user names for different hosts by defining this setting in host-
specific stanzas. The default is the current value of the environment
variable $USER.

VerboseMode

Sets the debug level to verbose mode, which is equivalent to setting the
debug level to 2. You can also configure this on the ssh command line
using the -v option. The allowed values are 'yes' and 'no'. The default is
'no'.

XauthPath

Specifies the location of the xauth(1) program. The default (for example
/usr/X11R6/bin/xauth) is system-dependent.

Server Configuration Keywords

You can configure the following settings in the server configuration file. The
default file is /etc/ssh2/sshd2_config.

AccountManagement

Configures the account management system that sshd uses to validate a
user account. Account management services determine if an account is
active, and whether or not a password is still valid. The allowed values
are 'password', 'pam', and 'none'. The default is 'pam,password', which
requires the user account to pass validation by both systems.

pam - Use PAM for account management. PAM account management
applies to all sessions, regardless of the authentication method (or
methods) used. If an account is locked, the connection is refused.

password - Use the password database to validate the account.

none - Use no account validation. Use this only for troubleshooting.

AddressFamily

This setting is used by the server when it creates a listening, session, or
forwarding TCP socket. The allowed values are 'any' (allow the system
to decide which address family to use), 'inet' (accept only IPv4), and
'inet6' (accept only IPv6). The default is 'inet'. Note: The current value
of ListenAddress may also affect whether or not the server accepts
connections using IPv4 or IPv6 addresses.

AllowAgentForwarding

Specifies whether agent forwarding is allowed. The allowed values are
'yes' and 'no'. The default is 'yes'.

AllowedAuthentications

Specifies which authentication methods the server supports. The client
and server agree on one or more authentication methods during the
initial connection process, based on both client and server configuration.
(Use RequiredAuthentications to require one or more authentication
methods. RequiredAuthentications overrides AllowedAuthentications.)

The supported authentication methods are 'gssapi-keyex', 'gssapi-with-
mic', 'publickey', 'keyboard-interactive', and 'password'. The default is
'gssapi-with-mic, publickey, keyboard-interactive, password'.

AllowedPasswordAuthentications

This keyword is no longer supported. If you used it in previous versions,
you need to manually migrate your setting. Refer to the following
keywords: AllowedAuthentications, RequiredAuthentications, and
AuthKbdInt.Required.

 A P P E N D I X D

 Appendix D Server Configuration Keywords 133

AllowGroups

Use this keyword to allow login only for users who are members of a
specified group. Regular expressions are supported. For details, see
Configuring Group Access (page 98). If this keyword is not configured, all
groups are allowed to log in.

AllowHosts

Use this keyword to allow login only for specified client hosts. Regular
expressions are supported. For details, see Configuring Client Host Access
(page 98). If this keyword is not configured, all client hosts are allowed.

Notes:

If you configure a host expression using the domain name (rather than
IP address), you must also set ResolveClientHostName to 'yes'. When
ResolveClientHostName is 'yes', the resolved name is the fully qualified
domain name. This means that when RequireReverseMapping is 'yes',
you must specify a fully qualified domain name or use a regular
expression for the host name to ensure that connections from an IP
address are handled correctly.

To configure addresses in any allow or deny list, both IPv4 and IPv6
addresses must be specified. This is particularly important if you are
configuring a deny list to ensure that access is blocked. To configure
localhost in any allow or deny list, include IP addresses for all external
interfaces and also the local loopback address (127.0.0.1 and
0:0:0:0:0:0:0:1).

AllowSftpCommands

Controls what kinds of operations users can perform using sftp and scp
commands from Reflection for Secure IT clients. This keyword supports
a comma-separated list of one or more of the following: 'all', 'none',
'browse', 'download', 'upload', 'delete','rename'. The upload option enables
users to modify files, create files, create directories, or modify file
attributes on the server. The download option enables users to read file
contents. The default is 'all'.

Note: This setting affects both sftp and scp connections from Reflection
for Secure IT clients. The SessionRestricted keyword also affects access
to file transfers. The default value for SessionRestricted is 'shell, exec,
subsystem'. For Reflection for Secure IT clients, the 'subsystem' session
type is required for both sftp and scp transfers. For OpenSSH-style
clients 'subsystem' is required for sftp transfers; 'exec' is required for scp
transfers.

AllowTCPForwarding

Use this keyword to allow or deny port forwarding to all client users.
The allowed values are 'yes' and 'no'. The default is 'yes'. This keyword
controls both local (client to server) and remote (server to client
forwarding). Use ForwardAcl for more fine-grained control.

134 Reflection for Secure IT

AllowTCPForwardingForGroups

Use this keyword to allow port forwarding only for users who are
members of a specified group. Regular expressions are supported.

AllowTCPForwardingForUsers

Use this keyword to allow port forwarding only for specified users.
Regular expressions are supported.

AllowUsers

Use this keyword to allow login only for specified users. Regular
expressions are supported. For details, see Configuring User Access (page
97).

AllowX11Forwarding

Specifies whether X11 forwarding is allowed. The allowed values are 'yes'
and 'no'. The default is 'yes'.

AuthFailureErrorMessages

When set to 'no', no information about authentication failures is sent to
the client. This complies with SSH convention. When set to 'yes', the
client receives information about the reason for the failure. Warning:
This increases your security risk by providing this information to
potential attackers. The allowed values are 'yes' and 'no'. The default is
'no'.

AuthImmediateDisconnect

The allowed values are 'yes' and 'no'. The default is 'no'. When this
setting is 'no', the server responds identically to all failed authentication
attempts. This complies with SSH convention. When this setting is 'yes',
users with blocked accounts are disconnected as soon as possible, which
means they might not see any authentication prompts. If a user is
denied access because of Reflection for Secure IT server settings (for
example AllowUsers or DenyUsers), the disconnection always happens
immediately. If a user is denied access because of operating system
configuration, the timing of the disconnection is affected by the
AccountManagement setting. When AccountManagement=pam, denied
users see PAM authentication prompts before being disconnected. This
is because PAM authentication happens before PAM account
management. If you prefer to have users be disconnected without seeing
PAM authentication prompts, set AccountManagement=pam,password
(the default). In most cases, enabling password account management
provides the server with enough information about the user account to
reject the connection before PAM authentication starts.

Caution: Enabling this setting increases your security risk by providing
clients with information about valid account names.

 Appendix D Server Configuration Keywords 135

AuthKbdInt.Required

Specifies which authentication method to use for keyboard-interactive
authentication. The specified authentication method must succeed for
the user to be successfully authenticated. The allowed values are 'pam',
'password', and 'radius'. The default is 'pam', which specifies that PAM
modules are used for authentication and password management. When
'password' is specified, the user response is handled as a standard login
password. When 'radius' is specified, one or more RADIUS
authentication servers are used for authentication.

AuthKbdInt.Retries

Sets the maximum number of attempts allowed for keyboard interactive
authentication. The default is 3.

AuthKbdInt.Verbose

Specifies whether the server uses verbose keyboard interactive prompts.
The allowed values are 'yes' and 'no'. The default is 'no'.

AuthorizationFile

Specifies the name of the file used for configuring user keys for public
key authentication. For public key authentication to succeed, a key
presented by a client user for authentication must be correctly identified
in this file. For file syntax, see the FILES section.

The file is assumed to be relative to ~/.ssh2 (or whatever location is set
for UserConfigDirectory) unless you specify an absolute path. The
following macros are recognized: %U = user log-in name, %D = user's
home directory, %IU = UID for user, %IG = GID for user. The default
file is %D/.ssh2/authorization.

AuthPublicKey.MaxSize

Sets the largest public key size allowed for user authentication. The
default is 32768, and values larger than this are not allowed. The range
of accepted values is 512-32769. Using zero (0) is equivalent to using the
default.

AuthPublicKey.MinSize

Sets the smallest public key size allowed for user authentication. The
default is 512, and values smaller than this are not allowed. Using zero
(0) is equivalent to using the default.

AuthPublicKey.Retries

Specifies the maximum number of attempts the server accepts for public
key authentication. Once this number is reached, further attempts to
authenticate using a public key are rejected, but the connection is not
broken. This allows the client to attempt authentication using the next
allowed method. The default is 100.

136 Reflection for Secure IT

BannerMessageFile

Identifies a file that contains text for a banner message. The server
sends this text to the client before the client authenticates. Note: Some
clients do not support banner display. If you configure a banner, you
should ensure that your Secure Shell client supports this feature. The
default is /etc/ssh2/ssh_banner_message.

ChrootSftpGroups

Specifies groups whose users are restricted to their home directory for
sftp protocol connections. Any sftp protocol request that operates on a
file or directory is checked to ensure it is not outside of the confined
directory or any of its child directories. Regular expressions are
supported. Patterns match against group names, not GID's.

Note: This setting affects both sftp and scp connections from Reflection
for Secure IT clients. The SessionRestricted keyword also affects access
to file transfers. The default value for SessionRestricted is 'shell, exec,
subsystem'. For Reflection for Secure IT clients, the 'subsystem' session
type is required for both sftp and scp transfers. For OpenSSH-style
clients 'subsystem' is required for sftp transfers; 'exec' is required for scp
transfers.

When ChrootSftpUsers or ChrootSftpGroups is enabled, connected
users see additional subdirectories (etc on all platforms and dev on AIX)
added to their home directory. These directories cannot be moved or
deleted. The etc directory contains two required files. The rsit.conf file
identifies the installation location of files required by Reflection for
Secure IT. The localtime file is is needed so that processes such as
logging can get the current time. The system localtime file is in a
location that cannot be accessed by a chrooted user. Users running on
AIX also require /dev/null, which is needed for correct logging to syslog.

ChrootSftpUsers

Specifies users who are restricted to their home directory for sftp
protocol connections. Any sftp protocol request that operates on a file or
directory is checked to ensure it is not outside of the confined directory
or any of its child directories. Regular expressions are supported.
Patterns match against user names, not UID's.

Note: This setting affects both sftp and scp connections from Reflection
for Secure IT clients. The SessionRestricted keyword also affects access
to file transfers. The default value for SessionRestricted is 'shell, exec,
subsystem'. For Reflection for Secure IT clients, the 'subsystem' session
type is required for both sftp and scp transfers. For OpenSSH-style
clients 'subsystem' is required for sftp transfers; 'exec' is required for scp
transfers.

 Appendix D Server Configuration Keywords 137

When ChrootSftpUsers or ChrootSftpGroups is enabled, connected
users see additional subdirectories (etc on all platforms and dev on AIX)
added to their home directory. These directories cannot be moved or
deleted. The etc directory contains two required files. The rsit.conf file
identifies the installation location of files required by Reflection for
Secure IT. The localtime file is is needed so that processes such as
logging can get the current time. The system localtime file is in a
location that cannot be accessed by a chrooted user. Users running on
AIX also require /dev/null, which is needed for correct logging to syslog.

Ciphers

Specifies one or more (comma separated) encryption algorithms the
server supports. The cipher used for a given session is the cipher highest
in the client's order of preference that is also supported by the server.
Allowed values are 'aes128-ctr', 'aes128-cbc', 'aes192-ctr', 'aes192-cbc',
'aes256-ctr', 'aes256-cbc', 'blowfish-cbc', 'arcfour', 'arcfour128',
'arcfour256', 'cast128-cbc', and '3des-cbc'.

You can also set this value to 'none'. When 'none' is the agreed on
cipher, data is not encrypted. Note that this method provides no
confidentiality protection, and is not recommended.

The following values are provided for convenience: 'aes' (all supported
aes ciphers), 'blowfish' (equivalent to 'blowfish-cbc'), 'cast' (equivalent to
'cast128-cbc'), '3des' (equivalent to '3des-cbc'), 'Any' or 'AnyStd' (all
available ciphers plus 'none'), and 'AnyCipher' or 'AnyStdCipher' (all
available ciphers). The default is AnyStdCipher.

ClientAliveCountMax

The client alive mechanism enables the server to determine when the
client has become inactive. ClientAliveCountMax sets the maximum
number of client alive messages the server sends through the encrypted
channel to request a response from the client. If this number is reached
with no response from the client, the server ends the session and
disconnects the client. Specify the message interval using
ClientAliveInterval. The default is 3.

Note: These settings affect the SSH connection and messages are sent
through the SSH tunnel.

ClientAliveInterval

Sets the interval, in seconds, for sending client alive messages to the
client. If the client is unresponsive for this interval, the server sends a
message through the encrypted channel to request a response from the
client. Use ClientAliveCountMax to specify how many messages the
server sends without response before it ends the session and disconnects
the client. The default is 0 (disabled).

138 Reflection for Secure IT

Compat.RSA.HashScheme

Specifies whether the MD5 hash algorithm is supported for verifying the
digital signature for RSA keys used in public key or X.509 certificate
authentication. The allowed values are 'yes' and 'no'. When this keyword
is set to 'no' (the default), only signatures with SHA-1 hashes are
accepted. When it is set to 'yes' signatures with either SHA-1 or MD5
hashes are accepted.

Compression

Specifies the level of compression. You can specify compression values 0-
9. Increasing the value increases the amount of compression. Using
higher values results in the use of less network bandwidth, but at the
cost of more CPU cycles. Level 6 is equivalent to 'yes'. Level 0 is
equivalent to 'no'. The default is 'yes' (6).

DenyGroups

Use this keyword to deny login for specified user groups. Regular
expressions are supported. For details, see Configuring Group Access
(page 98). If this keyword is not configured, all groups are allowed to log
in.

DenyHosts

Use this keyword to deny login for specified client hosts. Regular
expressions are supported. For details, see Configuring Client Host Access
(page 98). If this keyword is not used, all client hosts are allowed.

Notes:

If you configure a host expression using the domain name (rather than
IP address), you must also set ResolveClientHostName to 'yes'. You
should also set RequireReverseMapping to 'yes' to prevent access from
hosts whose domain name could not be resolved.When
ResolveClientHostName is 'yes', the resolved name is the fully qualified
domain name. This means that when RequireReverseMapping is 'yes',
you must specify a fully qualified domain name or use a regular
expression for the host name to ensure that connections from an IP
address are handled correctly.

To configure addresses in any allow or deny list, both IPv4 and IPv6
addresses must be specified. This is particularly important if you are
configuring a deny list to ensure that access is blocked. To configure
localhost in any allow or deny list, include IP addresses for all external
interfaces and also the local loopback address (127.0.0.1 and
0:0:0:0:0:0:0:1).

DenyTCPForwardingForGroups

Use this keyword to deny port forwarding for specified user groups.
Regular expressions are supported. For details, see Configuring Group
Access (page 98).

 Appendix D Server Configuration Keywords 139

DenyTCPForwardingForUsers

Use this keyword to deny port forwarding for specified users. Regular
expressions are supported. For details, see Configuring User Access (page
97).

DenyUsers

Use this keyword to deny login for specified users. Regular expressions
are supported. For details, see Configuring User Access (page 97). If this
keyword is not configured, all users are allowed to log in.

FipsMode

Specifies whether all connections will be made using security protocols
and algorithms that meet FIPS 140-2 standards. The allowed values are
'yes' and 'no'. The default is 'no'.

ForwardACL

Use this keyword for detailed control over client access to port
forwarding. Regular expressions are supported. The syntax is:

ForwardACL allow|deny local|remote user_ex forward_ex [origin_ex]

user_ex is a regular expression that determines which users are allowed
or denied access to port forwarding. For details, see Configuring User
Access (page 97)."

forward_ex is a regular expression in the form host%port. Its meaning
depends on whether you are configuring restrictions on local or remote
forwards. If you are configuring local forwarding control, it specifies the
target host and port. If you are configuring remote forwarding control,
the host is the server computer and the port is the port that server is
forwarding to the client.

origin_ex is a regular expression that identifies an IP address. Its
meaning depends on whether you are configuring restrictions on local or
remote forwards. If you are configuring local forwarding control, it
specifies the client machine making the forward request. If you are
configuring remote forwarding control, it specifies the computer that is
connecting to the forwarded port on the server.

GatewayPorts

Specifies whether remote hosts are allowed to connect to ports
forwarded for the client. The allowed values are 'yes' and 'no'. The
default is 'no'.

HostCertificateFile

Specifies an X.509 certificate to be used for server authentication.
Specify the associated private key using HostKeyFile.

140 Reflection for Secure IT

HostKeyFile

Specifies the filename and location of the private key used to
authenticate the server. The default is /etc/ssh2/hostkey.

HostSpecificConfig

Specifies a host-specific subconfiguration file. The syntax is:

HostSpecificConfig host_expression subconfig_file

If the host expression matches the client host, the server uses the
specified subconfiguration file.

If you configure a host expression using the domain name (rather than
IP address), you must also set ResolveClientHostName to 'yes'.

HPNDisabled

Specifies whether Reflection for Secure IT uses HPN dynamic TCP
window features to enhance performance. When HPNDisabled = 'no'
(the default), Reflection for Secure IT adjusts the TCP window and TCP
receive buffers to optimize performance. When HPNDisabled is 'yes', the
receive buffer is set to 64 KB.

IdleTimeout

Specifies how long a connection can remain inactive before the server
terminates the connection. To set the time in seconds use an s or
nothing after the number. You can also specify a time in minutes (m),
hours (h), days (d), or weeks (w). Use zero (0) to set no limit. The
default is 0.

IgnoreRlogin

This keyword applies only to AIX systems. It specifies whether the
'rlogin' attribute in /etc/security/user should be ignored or applied. The
allowed values are 'yes' and 'no'. The default is 'no', which means that
the server honors the current 'rlogin' value. Note: The 'login' attribute in
/etc/security/user has no effect on remote logins made using the Secure
Shell client. This is true regardless of the value of IgnoreRlogin.

KeepAlive

Specifies whether the system should send TCP keep alive messages to
the other side. The server uses the system-wide value for how often the
message is sent. The allowed values are 'yes' and 'no'. The default is 'yes'.
Note: ClientAliveCountMax and ClientAliveInterval affect the SSH
connection and messages are sent through the SSH tunnel. The
KeepAlive setting affects the TCP connection, and is more vulnerable to
spoofing because TCP messages are not sent in the secure tunnel.

 Appendix D Server Configuration Keywords 141

KEXs

Specifies which key exchange algorithms the server supports. Supported
values are 'diffie-hellman-group1-sha1' and 'diffie-hellman-group14-
sha1'. Multiple algorithms can be specified as a comma-separated list.
The default value is 'diffie-hellman-group14-sha1,diffie-hellman-group1-
sha1'.

LibGssKrb5

Use this setting if you use GSSAPI (Kerberos 5) authentication. It
specifies the fully-qualified path to the Kerberos library called
libgssapi_krb5.so

LibKrb5

Use this setting if you use GSSAPI (Kerberos 5) authentication. It
specifies the fully-qualified path to the Kerberos library called
libkrb5.so.

Note: The server requires a library named libkrb5.so (or .sl on HP-UX
PARISC). If a library of this name is not present, you need to create a
symbolic link named libkrb5.so pointing to the actual library.

LibWrap

This keyword provides dynamic support for TCP Wrappers. To enable
TCP Wrapper support, specify the fully qualified path to the libwrap
shared library (for example, LibWrap=/usr/lib/libwrap.so). The libwrap
file must be a shared library and not a static one. By default, this
keyword is empty and the TCP Wrappers feature is disabled.

Note: Before using this keyword, you should confirm that the specified
file is a valid libwrap library. This is important to ensure that only
allowed users can connect. If the specified file doesn't exist, the sshd
server won't start. However, if the file exists, sshd starts, but does not
confirm that the file is a valid library. For each connection, the sshd
process tries to load the specified file, and, if the file is not a valid
library, the server logs an error message and allows the user to connect.

ListenAddress

Specifies the address of the interface to which the sshdserver socket is
bound. You can specify one or more comma-separated values using
either IPv4 or IPv6 format, or use 'any' (the default). The value 'any'
configures the server to listen to any available IPv4 or IPv6 address
(equivalent to '[::],0.0.0.0'). If you specify only IPv4 addresses, the
client must connect using an IPv4 address. If you specify only IPv6
format, most operating systems will still allow IPv4 clients to connect;
this is controlled by the operating system, not the Secure Shell server.
You can optionally include a port in the address by adding a colon or
space followed by the port number. This port value overrides the Port
keyword setting. If you are specifying an IPv6 address, you need to
surround the address with square brackets.

142 Reflection for Secure IT

For example:

IPv4 syntax: ListenAddress=209.85.171.99:6666

IPv6 syntax: ListenAddress=[::D155:AB63]:6666

ListenAddress interacts with the AddressFamily setting. When
AddressFamily=inet, the ListenAddress value 'any' is equivalent to
'0.0.0.0'. When AddressFamily=inet6, the ListenAddress value 'any' is
equivalent to '[::]'. If AddressFamily is set to either 'inet' or 'inet6' and
ListenAddress specifies an address of a different family, sshd will fail to
start because of a configuration file error. If you specify a host name for
ListenAddress rather than an IP address, the AddressFamily
restrictions require that the host name be associated with an address of
the appropriate family; and the server will bind to that address.

LogCertificateSubject

Specifies whether the Serial Number and Subject of certificates used for
authentication are logged to the system log. Messages are logged for
both successful and failed attempts. The allowed values are 'yes' and 'no'.
The default is 'yes'.

LoginGraceTime

Sets the number of seconds allowed for client authentication. If the
client fails to authenticate the user within the specified number of
seconds, the server disconnects and exits. Use zero (0) to set no limit.
The default is 120.

LogLevel

Sets the verbosity level used for sshd messages logged to syslog. Allowed
values are 'fatal', 'error', 'quiet', 'info', 'verbose', 'debug1' ('debug' and 1
are equivalent), 'debug2' (2 is equivalent), 'debug3' (3 is equivalent), and
'trace' ('debug99' and 99 are equivalent). The syslog level associated with
these values is CRIT for fatal, ERROR for error and quiet, INFO for
info and verbose, and DEBUG for debug1, debug2, debug3, and trace.
The default is 'error'.

Note: Setting logging to 'trace' can increase your security risk. At this
level, information leakage is a concern, as unencrypted protocol
information may be written out. Also, the volume of information written
may fill up disk space rapidly, potentially causing the host or Reflection
for Secure IT to stop responding.

LogPublicKeyFingerPrint

Specifies whether public key fingerprints used for authentication are
logged to the system log. Messages are logged for both successful and
failed attempts. The allowed values are 'yes' and 'no'. The default is 'yes'.

 Appendix D Server Configuration Keywords 143

MACs

Specifies which MACs (hashed message authentication codes) the server
allows for verifying data integrity. Allowed values are 'hmac-sha1',
'hmac-sha1-96', 'hmac-md5', 'hmac-md5-96', 'hmac-ripemd160', 'hmac-
sha256', and 'hmac-sha512'. Use 'AnyMac' to support all of these. Use
'AnyStdMac' to support 'hmac-sha1', 'hmac-sha1-96', 'hmac-md5', and
'hmac-md5-96'. Additional options are 'none', 'any' (equivalent to
AnyMac plus 'none'), and 'AnyStd' (equivalent to 'AnyStdMac' plus
'none'). Multiple MACs can also be specified as a comma-separated list.
When 'none' is the agreed on MAC, no message authentication code is
used. Because this provides no data integrity protection, options that
include 'none' are not recommended. The default is 'AnyStdMac'.

MaxConnections

Sets the maximum number of client connections allowed. Use zero (0) to
set no limit. The default is 50.

MaxStartups

Specifies the maximum number of concurrent unauthenticated
connection attempts allowed. After this limit is reached additional
connections are dropped until authentication succeeds or the
LoginGraceTime limit is reached for a connection attempt. The default
is 10.

PamServiceName

Specifies the name of the PAM (Pluggable Authentication Modules)
service used for authentication and sessions. The default is 'ssh'.

PamServiceNameForInternalProcesses

Specifies the name of an optional PAM service to be used for internal
processes. You can use the specified service to provide additional
account and session management. For example:

PamServiceNameForInternalProcesses ssh-shell

In this case, all users still go through the service specified by
PamServiceName ("ssh" by default). Shell and exec users will also go
through the “ssh-shell” service.

Note: The specified PAM service will always support PAM account and
session management and may support authentication management on
particular platforms (Linux and AIX, but not Solaris). Because
authentication management may or may not be used depending on the
platform, it should always be set to pam_permit.so so that access to the
system can be configured using account and session management.

144 Reflection for Secure IT

PamServiceNameForSubsystems

Specifies the name of an optional PAM service to be used for
subsystems. You can use the specified service to provide additional
account and session management. The syntax is:

PamServiceNameForSubsystems subsystem PAMservicename

For example, You could use the following to provide additional account
and session management for SFTP connections:

PAMServiceNameforSubsystems sftp ssh-sftp

In this case, all users still go through the service specified by
PamServiceName ("ssh" by default). SFTP users will also go through
the "ssh-sftp" service.

Note: The specified PAM service will always support PAM account and
session management and may support authentication management on
particular platforms (Linux and AIX, but not Solaris). Because
authentication management may or may not be used depending on the
platform, it should always be set to pam_permit.so so that access to the
system can be configured using account and session management.

PasswordGuesses

Sets the maximum number of attempts the user is allowed for password
authentication. The default is 3.

PermitEmptyPasswords

Specifies whether the server allows password authentication by users
with empty (null) passwords. The allowed values are 'yes' and 'no'. The
default is 'yes'.

PermitRootLogin

Specifies whether client users with root privileges can log in. The
allowed values are 'yes', 'no', and 'without-password'. If you specify
'without-password', a user can log in with root privileges only if 'public
key' or 'GSSAPI' authentication methods are used to authenticate the
user. The default is 'yes', which allows root login for all authentication
methods.

PidFile

Specifies the file that contains the process ID of the sshd daemon. Use a
fully qualified path. If the file name contains the string %s, the string will
be replaced by the server port number.

PkidAddress

Specifies the port used to connect to PKI Services Manager. Use the
format host:port. The default is localhost:18081. If you specify a host and
omit the port, the default PKI Services Manager port (18081) is used.

 Appendix D Server Configuration Keywords 145

PkidPublicKey

Specifies the name and location of the public key used by to confirm the
identity of Reflection PKI Services Manager. The default is
/opt/attachmate/pkid/config/pki_key.pub.

Port

Specifies the port on which the server listens. The default is 22, which is
the standard port for Secure Shell connections.

PrintMotd

Specifies whether the server prints the message-of-the-day text from
the file /etc/motd when a user logs into a terminal session. (This setting
does not override the display of /etc/issue.) The allowed values are 'yes'
and 'no'. The default is 'yes'.

ProtocolVersionString

Specifies the software version portion of the string that the server sends
to clients during the initial connection protocol. (The first part of the
string is always "SSH-2.0-", which indicates the SSH version supported
by the server. This is required by the protocol RFC and cannot be
edited.) Use double quotation marks if the string includes spaces. When
ProtocolVersionString is an empty string (the default), the software
version portion of the string is generated automatically, and includes the
server's version and build number. This number will be updated
automatically when you upgrade your server software.

Note: Many clients use the protocol string to identify the server type
and enable compatible features. Changing the default value may cause
public key authentication to fail, and may also affect the functionality of
other features that vary between servers.

QuietMode

This keyword is deprecated. Use LogLevel.

RadiusFile

Specifies the name of the file used for configuring RADIUS
authentication. The file is assumed to be relative to /etc/ssh2 unless you
specify an absolute path. For file syntax, see /etc/ssh2/radius_config in
the FILES section. There is no default; this keyword can have no value.

RekeyIntervalSeconds

Specify the interval (in seconds) after which the server initiates a new
key exchange. Setting this value too low can make communication
between the client and server impossible. To avoid this problem, it is
recommended that you avoid specifying an interval of less than 200
seconds. Use 0 (zero) to turn off rekey requests initiated by the server.
Using 0 does not prevent the client from requesting a rekey. The default
is 3600.

146 Reflection for Secure IT

RequiredAuthentications

Use this keyword to require one or more client authentication methods.
All specified authentication methods must succeed before a user is
considered authenticated. The supported authentication methods are
'gssapi-keyex', 'gssapi-with-mic', 'publickey', 'keyboard-interactive', and
'password'.

Note: RequiredAuthentications overrides AllowedAuthentications.

RequireReverseMapping

Specifies whether DNS lookup must succeed when checking whether
connections from client hosts are allowed. To enable this feature you
also need to set ResolveClientHostName to 'yes'. The allowed values are
'yes' and 'no'. The default is 'no'.

ResolveClientHostname

Specifies whether the server attempts to resolve the client IP address to
a domain name. Setting this to 'yes' may slow down the connection time,
but is required if you configure any keywords to match host names
based on domain name, rather than IP address. (See AllowHosts,
DenyHosts, UserSpecificConfig, and HostSpecificConfig.) Setting this
keyword to 'yes' also means that DNS names appear in the log rather
than IP addresses. The allowed values are 'yes' and 'no'. The default is
'yes'.

Note: When ResolveClientHostname is 'yes', the resolved name is always
the fully qualified domain name. This means that you must use a fully
qualified domain name with any keywords in which you specify a host
name, or use a regular expression to ensure that host names are handled
correctly.

SessionRestricted

Specifies what session types the server allows. The possible values are
'shell' (which allows terminal shell sessions), 'exec' (which allows the
client to execute commands on the server), and 'subsystem' (which is
required to support sftp and scp transfers from Reflection for Secure IT
clients). The default is 'shell, exec, subsystem'.

Note: For OpenSSH-style clients 'subsystem' is required for sftp
transfers;'exec' is required for scp transfers.

 Appendix D Server Configuration Keywords 147

SettableEnvironmentVars

Specifies which environment variables can be configured by the client.
This value limits the scope of the client SetRemoteEnv keyword on the
client and the user-specific environment file (~/.ssh2/environment).
(Note:This setting does not affect variables configured in
/etc/environment, /etc/ssh2/environment or other server files which can
be controlled only by root.) The arguments must be uppercase. This
keyword is enabled in the default configuration file and set to the
following value:
'LANG,LC_ALL,LC_COLLATE,LC_CTYPE,LC_MONETARY,LC_NU
MERIC,LC_TIME,PATH,TERM,TZ,UMASK'

SmartFileTransfer

Specifies whether the server performs checks for file equality before
transferring data. When this keyword is 'yes' (the default), the server
supports smart file copy (which enables skipping transfer of identical
files) and checkpoint resume (which enables interrupted file transfers to
resume at the point of interruption). When this keyword is 'no',
Reflection for Secure IT always transfers the entire content of every file.
Note: Smart file copy can be disabled on the client using SmartFileCopy.
Checkpoint resume can be disabled on the client using
CheckpointResume.

SftpLogCategory

Determines which categories of sftp server messages are sent to the
facility specified by SftpSysLogFacility. Use a comma-separated list. The
default is 'loginlogout,directorylistings,downloads,modifications,uploads',
which configures logging of all categories. You can specify any of those
options, plus 'all', or 'none'.

SftpSysLogFacility

Specifies the facility code used for logging messages from the sftp-server
subsystem. This value is empty by default. When this value is empty and
LogLevel is not empty, logging goes to the AUTH facility. When
SftpSysLogFacility and LogLevel are both empty, the server does no
logging to syslog. When this value is 'none', Reflection for Secure IT
disables logging to syslog (regardless of the LogLevel setting). Other
valid values are platform-dependent. See syslog(3).Valid values are
platform-dependent. See syslog(3). Setting this to "auth" puts the log
messages in the same facility as the default for sshd.

148 Reflection for Secure IT

StrictModes

Specifies the directory permissions required for public key
authentication. The allowed values are 'yes' and 'no'. The default is 'yes'.
When set to 'yes', The user's directory (~/.ssh2) and all parent
directories must be writable and executable only by the user (mode 744
is accepted). Recommended permissions for the user directory = 700. If
these conditions aren't met, public key authentication fails. When set to
'no' these file permissions are not enforced and sensitive files and
information could be compromised.

Note: Additional file permission requirements are enforced for each
user's authorization file (~/.ssh2/authorization) regardless of the
current StrictModes setting. This file must be configured to prevent
group and public write access (600 is recommended, 644 is accepted). If
the authorization file is not sufficiently restricted, public key
authentication will always fail.

Subsystem

Specifies a subsystem to export to the client. The argument specifies the
command to execute when the client requests the subsystem. The
separator character following the keyword can be a dash, an equals sign,
or a space.

To support sftp and scp transfers, the sftp-server subsystem must be
specified. The default configuration shown below executes the sftp
service internally in the child process.

Subsystem-sftp internal://sftp-server

SyslogFacility

Specifies the facility code used for logging messages from the server. The
default is 'AUTH'. When this value is 'none', Reflection for Secure IT
disables logging to syslog. Other valid values are platform-dependent.
See syslog(3).

Note: Setting this value to 'none' is not recommended because it means
you have no audit log of connection attempts or user logins. In the event
of a denial-of-service attack, an audit log can help identify a set of IP
addresses connecting excessively. An audit log can also provide
important evidence if a user falsely claims to not have accessed your
system (non-repudiation).

Note: The debugging level you specify for writing to this log can have
security ramifications. For more information see LogLevel.

 Appendix D Server Configuration Keywords 149

TrustAnchor

This keyword is optional and is relevant only if you use certificates for
user authentication. By default, Reflection PKI Services Manager
validates certificates presented for authentication using all of the trust
anchors you have configured. Use this keyword to limit which of the
Reflection PKI Services Manager trust anchors can be used for
certificate validation. You can specify either Subject DN (Distinguished
Name) from a certificate available in the PKI Services Manager store,
or use the file name of a certificate. Note that the specified trust
anchors must be also be configured for Reflection PKI Services Manager
(using the PKI Services Manager TrustAnchor keyword).

UseLogin

Specifies whether login(1) is used for interactive login sessions. The
allowed values are 'yes' and 'no'. The default is 'no'.

Notes:

login(1) is never used for remote command execution.

Enabling this setting disables X11Forwarding because login(1) does not
know how to handle xauth(1) cookies.

Using login(1) disables privilege separation. By default, sshd creates a
new process that has the privilege of the authenticated user after a
successful authentication. This is done to prevent privilege escalation by
containing any corruption within the unprivileged processes. Enabling
UseLogin disables this functionality.

UsePAM

This setting provides an alternate way to configure the server to use
PAM. The allowed values are 'yes' and 'no'. If UsePam is not configured,
the server uses the current values of AuthKbdInt.Required,
AccountManagement, and UsePamSessions. Setting this keyword to
'yes' is equivalent to setting AuthKbdInt.Required=pam, AccountManagement=pam,
and UsePamSessions=yes. Setting this keyword to 'no' is equivalent to
setting AuthKbdInt.Required=password, AccountManagement=password, and
UsePamSessions=no.

Note: If you modify UsePAM, be sure that none of the related keywords
are set after UsePAM in the configuration file. If AuthKbdInt.Required,
AccountManagement, or UsePamSessions is set to a conflicting value
after UsePAM, that value overrides the value configured by UsePAM
because the last value read by the server is the one it uses.

UsePAMAcctMgmt

This keyword is deprecated. Setting it to 'yes' is equivalent to setting
AccountManagement=pam.

150 Reflection for Secure IT

UsePamSessions

Specifies whether or not PAM is used for session management. The
allowed values are 'yes' and 'no'. The default is 'yes'.

UserConfigDirectory

Specifies the directory used for user-specific information. This directory
contains the authentication file (required for key authentication) and
other user-specific files listed in the FILES section. The following
macros are recognized: %U = user log-in name, %D = user's home
directory, %IU = UID for user, %IG = GID for user. The default is
'%D/.ssh2'.

UserSpecificConfig

Specifies a user-specific configuration file. The syntax is:

UserSpecificConfig user_expression subconfig_file

If the user expression matches the user attempting a connection, the
server uses the specified subconfiguration file.

Note: If you configure the host portion of this expression to match based
on host domain name (rather than IP address), you must also set
ResolveClientHostName to 'yes'.

VerboseMode

This keyword is deprecated. Use LogLevel.

X11DisplayOffset

Sets the first display number available for X11 forwarding by the server.
The default is 10.

X11UseLocalHost

Specifies whether the server should bind X11 forwarding to the loopback
address or to the wildcard address. The allowed values are 'yes' and 'no'.
The default is 'yes'.

XAuthPath

Specifies the location of the xauth(1) program. The default (for example
/usr/X11R6/bin/xauth) is system-dependent.

File and Directory Permissions

To help ensure secure authentication, and prevent tampering, information
leakage and spoofing, files and directories used by the client and server
must be configured with correct permissions and ownership. If these
conditions aren't met, Secure Shell connections and public key
authentication may fail.

Notes:

 The StrictModes setting helps ensure enforcement of a satisfactory level
of security and is enabled by default on both the server and the client.

 Files must be owned by root or by the owner of the home directory in
which the files reside.

 Where permission requirements are enforced, the permissions must be
at the level indicated in the table below, or more restrictive (less than or
equal to the octal value shown in brackets).

 Files and directories shown in parentheses are the defaults.

Client-side files and directories

File or
Directory

Maximum
Security

Required when
StrictModes = no

Required when
StrictModes = yes

Secure Shell directory
(~/.ssh2/)

700 No requirements User-only write
access [755]

User home directory and
All parent directories

744
755

No requirements User-only write
access [755]

User’s private keys 600 User-only
read/write access
[600]

User-only
read/write access
[600]

User's public keys 600 No requirements No requirements

User's identification file
(~/.ssh2/identification)

600 No requirements User-only write
access [644]

User's host keys directory
(~/.ssh2/hostkeys)

700 No requirements No requirements

Host public key files 600 No requirements No requirements

User's configuration file
(~/.ssh2/ssh2_config)

600 No requirements User-only write
access [644]

 A P P E N D I X E

152 Reflection for Secure IT

File or
Directory

Maximum
Security

Required when
StrictModes = no

Required when
StrictModes = yes

Client PKI Services
Manager public key
(specified using
PkidPublicKey)

600 No requirements No requirements

Global configuration
directory (/etc/ssh2/)

755 No requirements No requirements

Global host keys directory
(/etc/ssh2/hostkeys)

755 No requirements No requirements

Global host public key files 644 No requirements No requirements

Global user configuration file
(/etc/ssh2/ssh2_config)

644 No requirements No requirements

Server-side files and directories (user-specific)

File or
Directory

Maximum
Security

Required when
StrictModes = no

Required when
StrictModes = yes

Secure Shell directory
(~/.ssh2/)

700 No requirements User-only write
access [755]

User home directory and
all parent directories

744
755

No requirements User-only write
access [755]

User's authorization file on
the server
(~/.ssh2/authorization)

600 User-only write
access [644]

User-only write
access [644]

User’s secure shell
environment file on the
server (~/.ssh2/environment)

600 No requirements No requirements

User's login behavior file
(~/.hushlogin)

600 No requirements No requirements

 Appendix E File and Directory Permissions 153

Server-side files and directories (global)

File or
Directory

Maximum
Security

Required when
StrictModes = no

Required when
StrictModes = yes

Server configuration
directory (/etc/ssh2)

644 No requirements No requirements

Server private key file
(/etc/ssh2/hostkey)

600 Root-only
read/write access
(600)

Root-only
read/write access
(600)

Server public key file
(/etc/ssh2/hostkey.pub

600 No requirements No requirements

Server RADIUS
authentication configuration
file
(/etc/ssh2/radius_config)

600 No requirements No requirements

Subconfiguration file
directory
(/etc/ssh2/subconfig)

700 No requirements No requirements

Subconfiguration files 600 No requirements No requirements

Global Secure Shell
environment file
(/etc/ssh2/environment)

600 No requirements No requirements

Client PKI Services
Manager public key
(specified using
PkidPublicKey)

600 No requirements No requirements

ssh Command Line Options

The syntax for ssh is:

ssh [-4] [-6] [-a] [-c cipher] [-C] [-d debug_level] [-e character]
[-f] [-fo] [-F file] [-g] [-h] [-i file] [-l username]
[-L [[protocol/]listening_port:host:hostport] [-m mac_algorithm] [-n]
[-o option] [-p port] [-q] [-R [protocol/]listening_port:host:hostport]
[-s subsystem] [-S] [-t] [-v] [-V] [-W] [-x] [-X] [-Y]
[[username@]host[#port]] [remote_command [arguments] ...]

Options are available in both a single-character form (such as -o) and a
descriptive equivalent (--option). Single characters are shown here. To view
the descriptive equivalents, use the -h command line option.

Caution: All options specified on the command line (including user names,
host names, and other sensitive information) will show up in a process
status (ps) listing. Exercise care when specifying sensitive options and
switches so that other users cannot easily see that information. A more
secure alternative is to set these options in a configuration file and to
protect the configuration file using recommended file permissions
(configuration file = 600, directory containing the file = 700).

-4

Forces connections using IPv4 addresses only. You can also configure IP
address requirements using the AddressFamily keyword.

-6

Forces connections using IPv6 addresses only. You can also configure IP
address requirements using the AddressFamily keyword.

-a

Disables authentication agent forwarding. Authentication agent
forwarding is enabled using the ForwardAgent keyword, which is set to
'yes' by default. You can use -a to override the configuration file setting.

-c cipher

Specifies one or more (comma-separated) encryption algorithms
supported by the client. The cipher used for a given session is the cipher
highest in the client's order of preference that is also supported by the
server. Allowed values are 'aes128-ctr', 'aes128-cbc', 'aes192-ctr', 'aes192-
cbc', 'aes256-ctr', 'aes256-cbc', 'blowfish-cbc', 'arcfour', 'arcfour128',
'arcfour256', 'cast128-cbc', and '3des-cbc'.

You can also set this value to 'none'. When 'none' is the agreed on
cipher, data is not encrypted. Note that this method provides no
confidentiality protection, and is not recommended.

 A P P E N D I X F

 Appendix F ssh Command Line Options 155

The following values are provided for convenience: 'aes' (all supported
aes ciphers), 'blowfish' (equivalent to 'blowfish-cbc'), 'cast' (equivalent to
'cast128-cbc'), '3des' (equivalent to '3des-cbc'), 'Any' or 'AnyStd' (all
available ciphers plus 'none'), and 'AnyCipher' or 'AnyStdCipher' (all
available ciphers).

You can also configure encryption algorithms in the configuration file
using the Ciphers keyword; the default is 'AnyStdCipher'.

-C

Disables compression. Compression is desirable on modem lines and
other slow connections, but will slow down response rates on fast
networks. Compression also adds extra randomness to the packet,
making it harder for a malicious person to decrypt the packet.
Compression can be enabled using the Compression keyword in the
configuration file. Using -C overrides the configuration file setting.

-d debug_level

Sets the debug level. Increasing the value increases the amount of
information displayed. Use 1, 2, 3, or 99. (Values 4-98 are accepted, but
are equivalent to 3.)

Note: Setting logging to 99 can increase your security risk. At this level,
information leakage is a concern, as unencrypted protocol information
may be written out. Also, the volume of information written may fill up
disk space rapidly, potentially causing the host or Reflection for Secure
IT to stop responding.

-e character

Sets the escape character for the terminal session. The default character
is a tilde (~). Setting the escape character to 'none' means that no escape
character is available and the tilde acts like any other character. For
details, see ESCAPE SEQUENCES below. You can also set the escape
character in the configuration file using the EscapeChar keyword.

-f

Use this option when you have configured port forwarding and you want
the Secure Shell session to run in the background. If at least one port
forwarding rule is configured, this option sends the Secure Shell session
to the background after authentication is complete. The session remains
in the background and continues to accept forward requests indefinitely
until you manually kill the process. (This is equivalent to setting
GoBackground=yes in the configuration file.)

-fo

The options works like -f, but in this case the background session waits
for only one forwarded connection to occur and exits as soon as the
forwarded connection is closed. (This is equivalent to setting
GoBackground=oneshot in the configuration file.)

156 Reflection for Secure IT

-F file

Specifies an additional configuration file. Settings are read from this file
in addition to the default user-specific file (~/.ssh2/ssh2_config and/or
the system-wide file (/etc/ssh2/ssh2_config). Settings in this file
override settings in both the user-specific file and the system-wide file.

-g

Enables gateway ports. Remote hosts are allowed to connect to local
forwarded ports. You can also configure this in the configuration file
using theGatewayPorts keyword.

Caution: This option should be used with extreme caution (and never
with Internet-facing network adapters), because the client performs no
authentication of remote host connections. If the application to which
this connection is forwarded does not perform its own authentication,
then all remote hosts connections are allowed unrestricted access to
that application.

-h

Displays a brief summary of command options.

-i file

Specifies an alternate identification file to use for public key
authentication. The file location is assumed to be in the current working
directory unless you specify a fully-qualified or relative path. The default
identity file is ~/.ssh2/identification. You can also specify an identity
file in the configuration file using the IdentificationFile keyword.

-l username

Specifies a name to use for login on the remote computer. You can also
specify a user name in the configuration file using theUsername
keyword. (Note: If you include the optional [user@] as part of your host
specification, -l overrides the specified user name.)

 Appendix F ssh Command Line Options 157

-L [protocol/][listening_host:]listening_port:host:hostport

Redirects data from the specified local port, through the secure tunnel
to the specified destination host and port. When a Secure Shell
connection is established, the Secure Shell client opens a socket on the
Secure Shell client host using the designated local port (listening_port).
(On client hosts with multiple interfaces, use listening_host to specify
which interface.) Configure your application client (the one whose data
you want to forward) to send data to the forwarded socket (rather than
directly to the destination host and port). When that client establishes a
connection, all data sent to the forwarded port is redirected through the
secure tunnel to the Secure Shell server, which decrypts it and then
directs it to the destination socket (host,hostport). Unless the gateway
ports option is enabled, the forwarded local port is available only to
clients running on the same computer as the Secure Shell client. The
optional protocol can be tcp or ftp. Multiple client applications can use
the forwarded port, but the forward is active only while ssh is running.

Note: If the final destination host and port are not on the Secure Shell
server host, data is sent in the clear between the Secure Shell host and
the application server host.

You can also configure local forwarding in the configuration file using
the LocalForward keyword.

-m mac_algorithm

Specifies which MACs (message authentication codes) are supported by
the client. Allowed values are 'hmac-sha1', 'hmac-sha1-96', 'hmac-md5',
'hmac-md5-96', 'hmac-ripemd160', 'hmac-sha256', and 'hmac-sha512'.
Use 'AnyMac' to support all of these. Use 'AnyStdMac' to support
'hmac-sha1', 'hmac-sha1-96', 'hmac-md5', and 'hmac-md5-96'. Additional
options are 'none', 'any' (equivalent to AnyMac plus 'none'), and 'AnyStd'
(equivalent to 'AnyStdMac' plus 'none'). Multiple MACs can also be
specified as a comma-separated list. When 'none' is the agreed on MAC,
no message authentication code is used. Because this provides no data
integrity protection, options that include 'none' are not recommended.

You can also configure MACs in the configuration file using the MACs
keyword; the default is 'AnyStdMac'.

-n

Redirects stdin from /dev/null, which prevents reading from stdin. You
can also configure this in the configuration file using theDontReadStdin
keyword.

158 Reflection for Secure IT

-o option

Sets any option that can be configured using a configuration file
keyword. For a list of keywords and their meanings, see ssh2_config(5).
Syntax alternatives are shown below. Use quotation marks to contain
expressions that include spaces.

-o key1=value

-o key1="sample value"

-o "key1 value"

-o key=value1,value2

-o key="value1, value2"

To configure multiple options, use multiple -o switches.

-o key1=value -o key2=value

-p port

Specifies the port to connect to on the server. The default is 22, which is
the standard port for Secure Shell connections. You can also configure
the port in the configuration file using the Port keyword.

-q

Enables quiet mode, which causes all warning and diagnostic messages,
including banners, to be suppressed. You can also configure this in the
configuration file using the QuietMode keyword.

-R [protocol/][listening_host:]listening_port:host:hostport

Redirects data from the specified remote port (on the computer running
the Secure Shell server), through the secure tunnel to the specified
destination host and port. When the Secure Shell connection is
established, the Secure Shell server opens a socket on its host (the
computer running the Secure Shell server) using the designated remote
port (listening_port). (On server hosts with multiple interfaces, use
listening_host to specify which interface.) Configure your client
application (the one whose data you want to forward) to send data to
the forwarded socket (rather than directly to the destination host and
port). When that client establishes a connection, all data sent to the
forwarded port is redirected through the secure tunnel to the Secure
Shell client, which decrypts it and then directs it to the destination
socket (host,hostport). The optional protocol can be tcp or ftp.

You can also configure remote forwarding in the configuration file using
the RemoteForward keyword.

 Appendix F ssh Command Line Options 159

-s subsystem

Invokes the specified subsystem on the remote system. Subsystems are a
feature of the Secure Shell protocol which facilitates the use of Secure
Shell as a secure transport for other applications (such as sftp).
Subsystems must be defined by the Secure Shell server.

-S

Connects without requesting a session channel on the server. This can
be used with port-forwarding requests if a session channel (and tty) is
not needed, or the server does not give one.

-t

Forces a tty allocation even if a command is specified. You can also
configure this in the configuration file using the ForcePTTYAllocation
keyword.

-v

Sets the debug level to verbose mode, which is equivalent to using '-d 2'.
You can also configure this in the configuration file using the
VerboseMode keyword.

-V

Displays product name and version information and exits. If other
options are specified on the command line, they are ignored.

-W password_file

Specifies a file containing the password to use for the connection. Set
permissions on the password file to 600; the file is not accepted if it has
read or write permissions for group or other. Also, for a non-root user,
the file is not accepted if there has been a change in identity (userid).
This option applies only to password authentication. If
AllowedAuthentications is configured to attempt keyboard-interactive
before password authentication (the default), users will receive a
password prompt even if a valid password file is present. To prevent
this, modify the allowed authentications list to support only password
authentication or to attempt password authentication before keyboard-
interactive.

Note: Passphraseless public keys provide a more secure way to configure
authentication without requiring user interaction, because private keys
are not transmitted over the encrypted connection like passwords are.

-X

Enables X11 connection forwarding and treats X11 clients as untrusted.
Untrusted remote X11 clients are prevented from tampering with data
belonging to trusted X11 clients. You can also configure this in the
configuration file using the ForwardX11 keyword.

160 Reflection for Secure IT

-x

Disables X11 connection forwarding. You can also configure this in the
configuration file using the ForwardX11 keyword.

-Y

Enables X11 connection forwarding and treats X11 clients as trusted.

ssh Escape Sequences

Use escape sequences to manage your client terminal session. Escape
sequences are recognized only after a newline character. If you have just
logged in, press Enter before you enter your first escape sequence. You can
configure an alternate escape character using -e on the command line or
EscapeChar in the configuration file.

The following escape sequences are available. These are shown with the
default escape character, a tilde (~).

~. Terminates the connection.

~^Z Suspends ssh.

~# Lists active forwarded connections. Note: Forwarded connections
are listed only when the ports are actually transmitting data.

~- Disables use of the escape character for the duration of the session.

~? Displays a list of available escape sequences.

~~ Sends the escape character to the host. (Type the escape character
twice to send one escape character.)

~C Execute command mode, which you can use to request port
forwarding. The options are:

 -L[bind_address:]port:host:hostport Request local forward
 -R[bind_address:]port:host:hostport Request remote forward
 -KL[bind_address:]port Cancel local forward
 -KR[bind_address:]port Cancel remote forward

~V Sends version information to stderr.

~s Sends connection information to stderr.

~r Initiates an immediate key exchange to establish new encryption
and integrity keys.

~l Enters line mode. Keystrokes are stored to a buffer and output when
you press Enter.

~B Sends a BREAK to the remote system.

 A P P E N D I X G

ssh Exit Values

Exit values are provided to assist in troubleshooting. In scripts we
recommend that you use only zero or non-zero for error handling. Looking
for specific non-zero values is not reliable because of variability caused by
operating systems and servers.

Error codes are limited to values 0-255. Errors 65-79 are disconnect
conditions, calculated as 64 + error value returned from host, as defined in
RFC4253. Errors values 128-254 are system Signals, calculated as 128 +
Signal value. Error value 255 is returned when ssh fails after being executed
by another process, such as scp.

0 Success.

1 Generic error.

2 Remote host connection failure.

65 Access denied by host for this client address.

66 Protocol error.

67 Key exchange failed.

68 Authentication failed.

69 MAC error.

70 Compression error.

71 Service not available.

72 Protocol version not supported.

73 Host key not verifiable.

74 Connection lost.

75 Disconnected by application.

76 Too many connections.

77 Cancelled by user.

78 No more authentication methods available.

79 Unknown user name.

 A P P E N D I X H

ssh-keygen Command Line Options

The ssh-keygen syntax is:

ssh-keygen [-7 file] [-b bits] [-c comment] [-D private_key] [-e private_key]
[-F key] [-h] [-H key] [-i key] [-k file] [-N new_passphrase] [-o key_name]
[-O key_file] [-p passphrase] [-P] [-q] [-t key_type] [-V] [-X cert] [key_name1
key_name2 ...]

Use ssh-keygen to create RSA and DSA keys for public key authentication,
to edit the properties of existing keys, and to convert key file formats for
compatibility with other Secure Shell implementations.

When no options are specified, ssh-keygen generates a 2048-bit RSA key
pair and queries you for a passphrase to protect the private key. If you don't
specify a file name on the command line, keys are created in ~/.ssh2/ and
given a default name that identifies the key type, size, and host name (for
example /home/joe/.ssh2/id_rsa_2048_myhost_a). If you specify a file name,
keys are saved to the current working directory unless you include a fully
qualified path name. For each private key you create, ssh-keygen also
generates a public key. Public keys are given the same base name as the
private key, with an added .pub extension (for example
id_rsa_2048_myhost_a.pub).

Command Line Options

Options are available in both a single-character form (such as -b) and a
descriptive equivalent (--bits). Single characters are shown here. To view
the descriptive equivalents, use the -h command line option.

-7 file

Extracts certificate(s) and CRL(s) from the specified PKCS#7 file.

-b bits

Specifies the key size. Up to a point, a larger key size improves security.
Increasing key size slows down the initial connection, but has no effect
on the speed of encryption or decryption of the data stream after a
successful connection has been made. The length of key you should use
depends on many factors, including: the key type, the lifetime of the key,
the value of the data being protected, the resources available to a
potential attacker, and the size of the symmetric key you use in
conjunction with this asymmetric key. To ensure the best choice for
your needs, we recommend that you contact your security officer. The
default for RSA keys is 2048 bits and 1024 bits for DSA keys. The
minimum allowed value is 512. The maximum allowed value is 32768.

 A P P E N D I X I

164 Reflection for Secure IT

-c comment

Specifies information for the comment field within the key file. Use
quotation marks if the string includes spaces. If you do not specify a
comment, a default comment is created that includes the key type,
creator, date, and time. Note: The comment is displayed when a
passphrase-protected key is used for client authentication. Don't store
passphrases or other sensitive information in the comment.

-D private_key

Uses the specified private key to derive a new copy of the public key.

-e private_key

Changes the passphrase of the specified private key. When you use this
option alone you will be queried for the old and new passphrase for the
specified private key. To edit the passphrase without opening an
interactive session, you can use this option in combination with -p and-
N. To change to a null passphrase, you can use this option in
combination with -P.

-F key

Displays the fingerprint of the specified key in Bubble Babble format.

-h

Displays a brief summary of command options.

-H key

Uses the specified Reflection public key to generate a public key in
OpenSSH format. The converted key is created using the same base file
name with an added .ssh extension. You can use the key that is created
to configure public key client authentication on an OpenSSH server.

-i key

Displays information about the specified key.

-k file

Extracts certificate(s) and private key(s) from the specified PKCS #12
file.

-N new_passphrase

Changes the passphrase to the specified new passphrase. Use this option
in combination with -e.

 Appendix I ssh-keygen Command Line Options 165

-o key_name

Specifies the filename for the generated private key. (A public key is
also created and is always given the same name as the private key plus a
.pub file extension.) Note: An alternate way of naming key files is to
specify one or more key filenames at the end of the ssh-keygen
command.

-O key

Uses the specified OpenSSH public or private key to create a public or
private key in Reflection format. The converted key is created using the
same base file name with an added .ssh2 extension.

-p passphrase

Specifies a passphrase. Use quotation marks if the phrase includes
spaces. This option creates the initial passphrase when you generate a
new key. If you are managing an existing key, use this option to specify
the passphrase that protects that key. If a passphrase is required and
you don't use -p, you'll be prompted for the passphrase. Ensure that you
follow your company's security policy for password length and
complexity.

-P

Creates a key with no passphrase. You can use this option to create keys
for server authentication. Passphrases are strongly recommended for
client keys. Passphraseless keys should be used only for accounts that
require unattended authentication (such as file transfer scripts).
Passphraseless private key files should be protected using operating
system file access controls (key file = 400, directory containing the key =
700).

-q

Hides the key generation progress indicator.

-t key_type

Specifies the algorithm used for key generation. Possible values are "rsa"
and "dsa". The default is "rsa".

-V

Displays ssh-keygen version information.

-X cert

Extracts the public key from the specified X.509 certificate file.

166 Reflection for Secure IT

[key_name1 key_name2...]

Specifies the file name (or names) to be used for the generated private
key (or keys). The public key is created using the same name with a
".pub" file extension.

scp Command Line Options

The scp syntax is:

scp [-4] [-6] [-a [arg]] [-b buffer_size] [-B] [-c cipher] [-d] [-D
debug_level] [-F file] [-h] [-i file] [-N max_requests] [-o option] [--
overwrite] [-p] [-P port] [-q] [-Q] [-Q] [-r] [-u] [-v] [-V] [-W]
[[user@]host[#port]:]file_or_dir ... [[user@]host[#port]:]file_or_dir

Options are available in both a single-character form (such as -o) and a
descriptive equivalent (--option). Single characters are shown here. To view
the descriptive equivalents, use the -h command line option.

Caution: All options specified on the command line (including user names,
host names, and other sensitive information) will show up in a process
status (ps) listing. Exercise care when specifying sensitive options and
switches so that other users cannot easily see that information. A more
secure alternative is to set these options in a configuration file and to
protect the configuration file using recommended file permissions
(configuration file = 600, directory containing the file = 700).

-4

Forces connections using IPv4 addresses only. You can also configure IP
address requirements using the AddressFamily keyword.

-6

Forces connections using IPv6 addresses only. You can also configure IP
address requirements using the AddressFamily keyword.

-a [newline_type]

Transfers files in ASCII mode. Use the optional argument to handle
newline conversion. You can specify either 'unix' or 'dos'. By default, the
value you specify for newline_type sets the destination newline
convention, but you can specify either source or destination conventions
by prefixing the argument with 'src:' or 'dest:'. For example:

scp -a src:unix –a dest:dos unixhost:src_file winhost:dest_file

Defaults are: 'dest:unix', 'src:unix'. If destination and source types are
the same, no conversion occurs. Otherwise a conversion occurs based on
values you specify for the 'src' and 'dest' newline types.

When -a is used without specified source or destination conventions, the
client attempts to retrieve the end-of-line convention for source and/or
destination from the server(s) to which connections have been
established. If the server does not support this functionality, the DOS
end-of-line convention is assumed.

 A P P E N D I X J

168 Reflection for Secure IT

-b buffer_size

Specifies the buffer size used for data transfer. The default is 32768
bytes. The minimum allowed value is 1024. The maximum allowed value
is 4194304 bytes. In most cases the default value provides close to
optimal transfer speeds. On some systems, moderate increases to the
buffer size can improve performance. Caution: Using very large buffer
sizes rarely improves performance and can create problems including:
slower transfers, transfer failures with servers that don't support very
large buffers, and fatal errors when client or server memory limits are
exceeded.

-B

Runs scp in batch mode, which disables all queries for user input. This is
useful for scripts and batch jobs. Authentication methods that require
user interaction are not supported when you use this option. In batch
mode scp always overwrites existing destination files unless --overwrite
is set to 'no'.

-c cipher

Specifies one or more (comma-separated) encryption algorithms
supported by the client. The cipher used for a given session is the cipher
highest in the client's order of preference that is also supported by the
server. Allowed values are 'aes128-ctr', 'aes128-cbc', 'aes192-ctr', 'aes192-
cbc', 'aes256-ctr', 'aes256-cbc', 'blowfish-cbc', 'arcfour', 'arcfour128',
'arcfour256', 'cast128-cbc', and '3des-cbc'.

You can also set this value to 'none'. When 'none' is the agreed on
cipher, data is not encrypted. Note that this method provides no
confidentiality protection, and is not recommended.

The following values are provided for convenience: 'aes' (all supported
aes ciphers), 'blowfish' (equivalent to 'blowfish-cbc'), 'cast' (equivalent to
'cast128-cbc'), '3des' (equivalent to '3des-cbc'), 'Any' or 'AnyStd' (all
available ciphers plus 'none'), and 'AnyCipher' or 'AnyStdCipher' (all
available ciphers).

If no cipher is specified, the cipher is determined by the Ciphers
keyword in the Secure Shell configuration file ssh2_config(5); the
default is 'AnyStdCipher'.

 Appendix J scp Command Line Options 169

-d

Forces the destination to be a directory that already exists. For example,
the following command copies source_file to the directory called
destination if this directory exists. If the directory doesn't exist,
source_file is copied to the demo directory and given the file name
destination.

scp source_file joe@myhost:~/demo/destination

With the -d flag added, the following command copies source_file to the
destination directory, but fails if this directory doesn't exist.

scp -d source_file joe@myhost:~/demo/destination

-D debug_level

Sets the debug level. Increasing the value increases the amount of
information displayed. Use 1, 2, 3, or 99. (Values 4-98 are accepted, but
are equivalent to 3.)

-F file

Specifies an additional configuration file. Settings are read from this file
in addition to the default user-specific file (~/.ssh2/ssh2_config and/or
the system-wide file (/etc/ssh2/ssh2_config). Settings in this file
override settings in both the user-specific file and the system-wide file.

-h

Displays a brief summary of command options.

-i file

Specifies an alternate identification file to use for public key
authentication. The file location is assumed to be in the current working
directory unless you specify a fully-qualified or relative path. The default
identity file is ~/.ssh2/identification.

-N max_requests

Specifies the maximum number of concurrent requests. Increasing this
may slightly improve file transfer speed, but also increases memory use.
The default is 256.

170 Reflection for Secure IT

-o option

Sets any option that can be configured using a configuration file
keyword. For a list of keywords and their meanings, see ssh2_config(5).
Syntax alternatives are shown below. Use quotation marks to contain
expressions that include spaces.

-o key1=value

-o key1="sample value"

-o "key1 value"

-o key=value1,value2

-o key="value1, value2"

To configure multiple options, use multiple -o switches.

-o key1=value -o key2=value

--overwrite [yes|no|ask]

Specifies whether or not to overwrite existing destination files. The
allowed values are 'yes', 'no', and 'ask'. The default is 'yes'. Note: When
the source and destination files are identical, no transfer occurs
regardless of the value of this setting.

-p

Preserves the modification times and file attributes of the original file.

-P port

Specifies the port to connect to on the server. The default is 22, which is
the standard port for Secure Shell connections. You can also configure
the port in the configuration file using the Port keyword.

-q

Runs in quiet mode. Only fatal errors are displayed.

-Q

Disables display of the progress indicator.

-r

Copies recursively, including all subdirectories.

-u

Deletes the source file after the copy to the destination location is
completed.

 Appendix J scp Command Line Options 171

-v

Sets the debug level to verbose mode, which is equivalent to setting the
debug level to 2. You can also configure this in the configuration file
using the VerboseMode keyword.

-V

Displays product name and version information and exits. If other
options are specified on the command line, they are ignored.

-W password_file

Specifies a file containing the password to use for the connection. Set
permissions on the password file to 600; the file is not accepted if it has
read or write permissions for group or other. Also, for a non-root user,
the file is not accepted if there has been a change in identity (userid).
This option applies only to password authentication. If
AllowedAuthentications is configured to attempt keyboard-interactive
before password authentication (the default), users will receive a
password prompt even if a valid password file is present. To prevent
this, modify the allowed authentications list to support only password
authentication or to attempt password authentication before keyboard-
interactive.

Note: Passphraseless public keys provide a more secure way to configure
authentication without requiring user interaction, because private keys
are not transmitted over the encrypted connection like passwords are.

sftp Command Line Options

The sftp syntax is:

sftp [-4] [-6] [-b buffer_size] [-B batch_file] [-c cipher] [-D debug_level] [-
h] [-m mac_algorithm] [-N max_requests] [-o option] [-P port] [-v] [-V] [-W]
[[user@]host[#port]]

Options are available in both a single-character form (such as -o) and a
descriptive equivalent (--option). Single characters are shown here. To view
the descriptive equivalents, use the -h command line option.

Caution: All options specified on the command line (including user names,
host names, and other sensitive information) will show up in a process
status (ps) listing. Exercise care when specifying sensitive options and
switches so that other users cannot easily see that information. A more
secure alternative is to set these options in a configuration file and to
protect the configuration file using recommended file permissions
(configuration file = 600, directory containing the file = 700).

-4

Forces connections using IPv4 addresses only. You can also configure IP
address requirements using the AddressFamily keyword.

-6

Forces connections using IPv6 addresses only. You can also configure IP
address requirements using the AddressFamily keyword.

-b buffer_size

Specifies the buffer size used for data transfer. The default is 32768
bytes. The minimum allowed value is 1024. The maximum allowed value
is 4194304 bytes. In most cases the default value provides close to
optimal transfer speeds. On some systems, moderate increases to the
buffer size can improve performance. Caution: Using very large buffer
sizes rarely improves performance and can create problems including:
slower transfers, transfer failures with servers that don't support very
large buffers, and fatal errors when client or server memory limits are
exceeded.

-B batch_file

Specifies a file to use for batch processing sftp commands. After a
successful login, sftp executes each command in the specified file until a
bye, exit or quit command is found, and then terminates the connection.
Authentication methods that require user interaction are not supported
in this mode. The batch file can use any of the interactive commands
documented below. If a command in the batch file fails, sftp continues
executing the remaining commands, and returns the error code of the
first failed command. However, commands prefixed with "-" (dash)
always return 0, even if the command fails.

 A P P E N D I X K

 Appendix K sftp Command Line Options 173

-c cipher

Specifies one or more (comma-separated) encryption algorithms
supported by the client. The cipher used for a given session is the cipher
highest in the client's order of preference that is also supported by the
server. Allowed values are 'aes128-ctr', 'aes128-cbc', 'aes192-ctr', 'aes192-
cbc', 'aes256-ctr', 'aes256-cbc', 'blowfish-cbc', 'arcfour', 'arcfour128',
'arcfour256', 'cast128-cbc', and '3des-cbc'.

You can also set this value to 'none'. When 'none' is the agreed on
cipher, data is not encrypted. Note that this method provides no
confidentiality protection, and is not recommended.

The following values are provided for convenience: 'aes' (all supported
aes ciphers), 'blowfish' (equivalent to 'blowfish-cbc'), 'cast' (equivalent to
'cast128-cbc'), '3des' (equivalent to '3des-cbc'), 'Any' or 'AnyStd' (all
available ciphers plus 'none'), and 'AnyCipher' or 'AnyStdCipher' (all
available ciphers). If no cipher is specified, the cipher is determined by
the Ciphers keyword in the Secure Shell configuration file
ssh2_config(5); the default is 'AnyStdCipher'.

-D debug_level

Sets the debug level. Increasing the value increases the amount of
information displayed. Use 1, 2, 3, or 99. (Values 4-98 are accepted, but
are equivalent to 3.)

-h

Displays a brief summary of command options.

-m mac_algorithm

Specifies which MACs (message authentication codes) are supported for
this connection. Allowed values are 'hmac-sha1', 'hmac-sha1-96', 'hmac-
md5', 'hmac-md5-96', 'hmac-ripemd160', 'hmac-sha256', and 'hmac-
sha512'. Use 'AnyMac' to support all of these. Use 'AnyStdMac' to
support 'hmac-sha1', 'hmac-sha1-96', 'hmac-md5', and 'hmac-md5-96'.
Additional options are 'none', 'any' (equivalent to AnyMac plus 'none'),
and 'AnyStd' (equivalent to 'AnyStdMac' plus 'none'). Multiple MACs
can also be specified as a comma-separated list. When 'none' is the
agreed on MAC, no message authentication code is used. Because this
provides no data integrity protection, options that include 'none' are not
recommended.

-N max_requests

Specifies the maximum number of concurrent requests. Increasing this
may slightly improve file transfer speed, but also increases memory use.
The default is 256.

174 Reflection for Secure IT

-o option

Sets any option that can be configured using a configuration file
keyword. For a list of keywords and their meanings, see ssh2_config(5).
Syntax alternatives are shown below. Use quotation marks to contain
expressions that include spaces.

-o key1=value

-o key1="sample value"

-o "key1 value"

-o key=value1,value2

-o key="value1, value2"

To configure multiple options, use multiple -o switches.

-o key1=value -o key2=value

--overwrite [yes|no|ask]

Specifies whether or not to overwrite existing destination files. The
allowed values are 'yes', 'no', and 'ask'. The default is 'yes'. Note: When
the source and destination files are identical, no transfer occurs
regardless of the value of this setting.

-P port

Specifies the port to connect to on the server. The default is 22, which is
the standard port for Secure Shell connections. You can also configure
the port in the configuration file using the Port keyword.

-v

Sets the debug level to verbose mode, which is equivalent to setting the
debug level to 2. You can also configure this in the configuration file
using the VerboseMode keyword.

-V

Displays product name and version information and exits. If other
options are specified on the command line, they are ignored.

 Appendix K sftp Command Line Options 175

-W password_file

Specifies a file containing the password to use for the connection. Set
permissions on the password file to 600; the file is not accepted if it has
read or write permissions for group or other. Also, for a non-root user,
the file is not accepted if there has been a change in identity (userid).
This option applies only to password authentication. If
AllowedAuthentications is configured to attempt keyboard-interactive
before password authentication (the default), users will receive a
password prompt even if a valid password file is present. To prevent
this, modify the allowed authentications list to support only password
authentication or to attempt password authentication before keyboard-
interactive.

Note: Passphraseless public keys provide a more secure way to configure
authentication without requiring user interaction, because private keys
are not transmitted over the encrypted connection like passwords are.

Supported sftp Commands

You can use the following commands in interactive sftp sessions and in sftp
batch files.

ascii [-s] [remote_newline] [local_newline]

Sets the current file transfer mode to ASCII. ASCII mode is useful for
translating end-of-line characters. Use remote_newline and local_newline if
you need to override the default handling of new lines. Supported values
for remote_newline are 'DOS' (\r\n) and 'Unix' (\n). If no explicit value
for the remote end-of-line convention is given, the remote host is
queried to provide the convention. If the remote host does not support
this functionality, the DOS end-of-line convention is assumed. The only
supported value for local_newline is 'Unix' (\n). Use -s to display the
current transfer mode.

auto

Sets the transfer mode to 'auto'. In auto mode, the transfer method is
determined by file extension. Files with specified file extensions use
ASCII transfer; all other files use binary transfer. The default list of
ASCII file types is "txt, htm*, pl, php*. To modify this list for a given
sftp session, use the setext command. To change the default file
extension list, use the client keyword FileCopyAsciiExtensions.

binary

Sets the transfer mode to binary. In this mode, files transfer without
any modification. Binary is the default transfer mode. This command is
useful for turning off ASCII mode within a batch script.

bye

This is a synonym for quit.

cd directory

Changes the remote directory to directory.

chgrp group file

Sets group ownership of files or directories specified by file to group.
The group must be specified as a numeric group id (GID).

chmod[-R]mode file

Sets file permissions for the files or directories specified by file. The
mode must be specified in numeric format (for example, 664). Use -R to
change files and directories recursively.

 A P P E N D I X L

 Appendix L Supported sftp Commands 177

chown owner file

Sets the owner of the files or directories specified by file to owner. The
owner must be specified as a numeric user id (UID).

close

Closes the connection to the remote server without exiting sftp.

debug debug_level |disable | no

Sets the debug level. Increasing the value increases the amount of
information displayed. Use 1, 2, 3, or 99. (Values 4-98 are accepted, but
are equivalent to 3.) Use either 'disable' or 'no' to disable debugging.

dir

This is a synonym for ls.

exit

This is a synonym for quit.

get [--preserve] | [-p] remote-file [remote-file ...]

Copies the specified file or files to the current local working directory.
(To copy to a different location, use lcd to change the local working
directory.) If a file with the same name already exists, the existing file is
overwritten. Wildcards are supported, but name substitution occurs on
file names only, not directories. Use either --preserve or -p to preserve
file attributes and time stamps.

getext

Displays the current list of file extensions that use ASCII file transfer
when auto mode is enabled. Use auto to enable auto mode. Use setext to
change this list for the current session. Use the client keyword
FileCopyAsciiExtensions to change the default list.

help | ? [command]

Displays sftp help. Use command to display help on the specified command.

lcd directory

Sets the local directory to directory.

178 Reflection for Secure IT

lls [-1 | -a | -f | -l | -n | -r | -S | -t | --] [file]

Displays the local directory listing. The options are:

-1 (one column)
-a (show hidden files)
-f (do not sort)
-l (long list format)
-n (long list format with numeric user and group ids)
-r (reverse order)
-S (sort by size)
-t (sort by file access time)
-- (treat hyphens that follow as ordinary characters.)

lmkdir directory

Creates the specified local directory.

ln

This is a synonym for symlink.

lpwd

Displays the local working directory.

ls [-1 | -a | -f | -l | -n | -r | -S | -t | --] [file]

Displays the remote directory listing. The options are the same as for lls,
and are described above.

mget

This is a synonym for get.

mkdir directory

Creates the specified remote directory.

mput

This is a synonym for put.

open [-l | [user@]host]

Opens a connection to the specified host. Use -l to connect to the local
host; in which case both local and remote commands act on files on the
local file system.

 Appendix L Supported sftp Commands 179

put [--preserve] | [-p] local_file [local_file ...]

Copies the specified file or files to the current remote working directory.
(To copy to a different location, use cd to change the remote working
directory.) If a file with the same name already exists, the existing file is
overwritten. Wildcards are supported, but name substitution occurs on
file names only, not directories. Use either --preserve or -p to preserve
file attributes and time stamps.

pwd

Displays the remote working directory.

quit

Exits sftp and closes the connection.

rename source destination

Renames a file from source to destination. No rename occurs if the
destination file already exists.

rm file

Deletes the specified remote file or files. Wildcards are supported.

rmdir directory

Deletes the specified remote directory.

setext

Specifies the current list of file extensions that use ASCII file transfer
when auto mode is enabled. To specify multiple extensions, use a comma
or space-separated list; this command is not cumulative. Wildcard (zsh-
glob) characters are supported. Don't precede file extensions with a
period. To specify extensions containing spaces, use quotation marks
around the extension or use a backslash as an escape character. Use
auto to enable auto mode. Use getext to display the current list. Use the
client keyword FileCopyAsciiExtensions to change the default list.

symlink linked_path target_path

Creates a symbolic link (soft) from linked_path to target_path on the
remote host.

verbose

Sets the debug level to verbose mode, which is equivalent to setting the
debug level to 2. To disable verbose mode, use 'debug disable'.

version

Displays the supported SFTP protocol version.

180 Reflection for Secure IT

ssh-add Command Line Options

The syntax for ssh-add is:

ssh-add [-c] [-d] [-D] [-h] [-l] [-L] [-p] [-t timeout] [-U] [-V] [file1 file2 ...]

Use file1, file2... to specify keys to add to the agent. Specifying a key file
is optional. If don't specify any key files, ssh-add adds all the keys specified
in your identification file (which is ~/.ssh2/identification by default)

Options are available in both a single-character form (such as -o) and a
descriptive equivalent (--option). Single characters are shown here. To view
the descriptive equivalents, use the -h command line option.

-c

Specifies that agent should ask for confirmation before using a key.

-d

Removes one or more specified keys from the agent. Use the file
argument to specify the key file(s).

-D

Removes all identities from the agent.

-h

Displays a brief summary of command options.

-l

Lists all the identities currently loaded in the key agent.

-L

Locks the key agent. You are prompted for a password, which you will
need to use to unlock the agent. Use -U to unlock.

-p

Reads the passphrase from stdin. This may be done over a pipe.

 A P P E N D I X M

182 Reflection for Secure IT

-t <timeout>

Sets a timeout for the key. Use zero (0) to set no limit. Keys are deleted
after the specified timeout.

By default, the timeout value is set in minutes. You can specify other
units using this syntax:

n<unit>[n<unit>…]

Where unit can be: s (seconds), m (minutes), h (hours), d (days), or w
(weeks). (Upper or lower case units are both accepted with the same
meaning.) For example:

3600s = 3600 seconds (1 hour)

2w = 2 weeks

2d4h = 2 days and 4 hours

-U

Unlocks an agent that has been locked using -L. You are prompted for
the required password.

-V

Displays product name and version information and exits. If other
options are specified on the command line, they are ignored.

-x

Specifies that the key files to be added are associated with X.509
certificates. If you use -x without specifying a file or files, Reflection for
Secure IT reads your identification file (~/.ssh2/identification by
default) and adds all the keys identified using the CertKey keyword.
Certificates must be in the same directory as the associated private key
and use the same base name with a .crt file extension.

ssh-agent Command Line Options

The syntax for ssh-agent is:

ssh-agent [-c] [-d debug_level] [-h] [k] [-s] [-t timeout] [-V] [command]

Options are available in both a single-character form (such as -o) and a
descriptive equivalent (--option). Single characters are shown here. To view
the descriptive equivalents, use the -h command line option.

-c

Forces the shell to be csh. By default ssh-agent uses the SHELL
environment variable to determine which shell to invoke. This option
overrides the default behavior.

-d debug_level

Sets the debug level. Increasing the value increases the amount of
information displayed. Use 1, 2, 3, or 99. (Values 4-98 are accepted, but
are equivalent to 3.)

-h

Displays a brief summary of command options.

-k

Kills the current agent (given by the SSH_AGENT_PID environment
variable).

-s

Forces the shell to be sh. By default ssh-agent uses the SHELL
environment variable to determine which shell to invoke. This option
overrides the default behavior.

-t timeout

Sets a default timeout for any key added to the agent. Keys are deleted
after the specified timeout. By default keys have no timeout limit, which
is equivalent to setting a timeout value of zero(0). (You can also specify
timeouts when you add keys by using the ssh-add -t option, which
overrides this setting.)

 A P P E N D I X N

184 Reflection for Secure IT

By default, the timeout value is set in minutes. You can specify other
units using this syntax:

n<unit>[n<unit>…]

Where unit can be: s (seconds), m (minutes), h (hours), d (days), or w
(weeks). (Upper or lower case units are both accepted with the same
meaning.) For example:

3600s = 3600 seconds (1 hour)

2w = 2 weeks

2d4h = 2 days and 4 hours

-V

Displays product name and version information and exits. If other
options are specified on the command line, they are ignored.

sshd Command Line Options

-4

Forces connections using IPv4 addresses only. You can also configure IP
address requirements using the AddressFamily keyword.

-6

Forces connections using IPv6 addresses only. You can also configure IP
address requirements using the AddressFamily keyword.

-b

When this option is specified sshd doesn't detach and doesn't become a
daemon. This can be used for monitoring.

-d level

Sets the debug level and sends debug output to stderr. Use 1, 2, 3, or 99.
(Values 4-98 are accepted, but are equivalent to 3.) With this option
sshd logs information for only one client connection, and terminates
after the client connection closes.

Note: Setting logging to 99 can increase your security risk. At this level,
information leakage is a concern, as unencrypted protocol information
may be written out. Also, the volume of information written may fill up
disk space rapidly, potentially causing the host or Reflection for Secure
IT to stop responding.

-D level

Sets the debug level and sends debug output to a file. This setting can
only be used by root. Use 1, 2, 3, or 99. (Values 4-98 are accepted, but are
equivalent to 3.) With this option, sshd does not terminate after a client
connection closes.

Note: Setting logging to 99 can increase your security risk. At this level,
information leakage is a concern, as unencrypted protocol information
may be written out. Also, the volume of information written may fill up
disk space rapidly, potentially causing the host or Reflection for Secure
IT to stop responding.

The output file is located in /etc/ssh2 and uses a file name in the form:
debugYYMMDD_HHMMSS_uniqueID, where YY=year, MM=month, DD=day,
HH=hour, MM=minutes, SS=seconds, and uniqueID is a unique value
that ensures that servers started at the same time use different logs.

-f config_file

Specifies an alternate name and location for the server configuration
file. The server reads the specified file instead of the default file. (The
default configuration file is /etc/ssh2/sshd2_config.)

 A P P E N D I X O

186 Reflection for Secure IT

-g login_timeout

Sets the number of seconds allowed for client authentication. If the
client fails to authenticate the user within the specified number of
seconds, the server disconnects and exits. Use zero (0) to set no limit.

-h host_key_file

Specifies the filename and location of the private key used to
authenticate the server. If the path is not fully qualified, the path is
assumed to be relative to /etc/ssh2. The default is /etc/ssh2/hostkey.

-o option

Sets any option that can be configured using a configuration file
keyword. For a list of keywords and their meanings, see sshd2_config(5).
Options configured on the command line override options configured in
the configuration file. Syntax alternatives are shown below. Use
quotation marks to contain expressions that include spaces.

-o key1=value

-o key1="sample value"

-o "key1 value"

-o key=value1,value2

-o key="value1, value2"

To configure multiple options, use multiple -o switches.

-o key1=value -o key2=value

-p port

Specifies the port on which the server listens. The default is 22, which is
the standard port for Secure Shell connections. The command line value
overrides any value set in the configuration file. Only one port is
allowed; if you configure multiple ports, the last configured port is used.

-q

Enables quiet mode. In this mode only errors are logged to the system
log. (Both -d and -D are ignored if -q is used on the same command
line.)

-v

Sets the debug level to verbose mode, which is equivalent to using '-d 2'.

-V

Displays product name and version information and exits. If other
options are specified on the command line, they are ignored.

ssh-certview Command Reference

SYNOPSIS

ssh-certview [-C] [-c] [-d debug_level] [-h] [-q] [-V] [-v] [file ...]

DESCRIPTION

Use ssh-certview to view the contents of X.509 certificates (in either PEM
or DER format), CRL lists, or PKCS#10 requests. You can also output
sample syntax for use in pki_mapfile(5), which is used by Reflection PKI
Services Manager to map certificates to allowed identities.

The ssh-certview output for certificate fields is compliant with RFC2253.
To be compliant with this standard, Subject and Issuer fields start with the
Common Name (for example, "CN = Secure CA, O = Secure Corporation, C
= US"). This format is also used by Reflection PKI Services Manager.

Note: Other utilities (including earlier versions of Reflection for Secure IT)
reverse the order of the field content in the Subject field output. The
reversed format is not equivalent and will not result in a match if used in a
PKI Services Manager map file.

OPTIONS

Options are available in both a single-character form (such as -o) and a
descriptive equivalent (--option). Single characters are shown here. To view
the descriptive equivalents, use the -h command line option.

-C

Specifies that output should include a comment mark (#) at the
beginning of each line of output.

-c

Extracts content from a certificate and outputs correct syntax for
inclusion in pki_mapfile(5). Unless you also specify -q, standard output
is also included, and is preceded by comment marks.

-d debug_level

Sets the debug level. Increasing the value increases the amount of
information displayed. Use 1, 2, 3, or 99. (Values 4-98 are accepted, but
are equivalent to 3.)

-h

Displays a brief summary of command options.

 A P P E N D I X P

188 Reflection for Secure IT

-q

Turns off display of all output except map file syntax. Use this option
with -c to output just map file syntax without commented certificate
information.

-V

Displays product name and version information and exits. If other
options are specified on the command line, they are ignored.

-v

Increases the verbosity of the output data.

If you are viewing a certificate with -v, the output includes Issuer, Serial
Number (hex), Subject, Subject Alternative Name, Validity period,
Extensions if set (including Key usage, Constraints, CDP, AIA, Policy
OIDs), Public key type, and Public key fingerprint. Without this option,
the output shows Issuer, Serial Number (hex), and Subject.

If you are viewing CRL with -v, the output includes the entire list of
revoked certificates. Without this option, the output shows issuer and
update information.

EXAMPLES

To view the contents of the specified certificate, including full information
about certificate extensions:

ssh-certview -v sample.crt

To view the contents of the certificate cacert.pem, the certificate request
cacert.pem.p10, and the certification revocation file example.revoke.crl:

ssh-certview cacert.pem cacert.pem.p10 example.revoke.crl

To extract sample output from the specified certificate for inclusion in a
PKI Services Manager map file:

ssh-certview -q -c cacert.pem

ssh-certtool Command Reference

SYNOPSIS

ssh-certtool [-b key-length] [-c comment] [-d debug-level] [-h] [-n algorithm]
[-o output-file] [-p private-key] [-P] [--passphrase passphrase] [-V] [-z
option] pkcs10|pkcs12 [arguments]

ssh-certtool [options] pkcs10 subject [keyUsage] [extendedKeyUsage]

ssh-certtool [options] pkcs12 [file1] ... [fileN]

DESCRIPTION

You can use ssh-certtool to create a PKCS#10 certificate request or to
create a PKCS#12 package containing a private key and one or more
certificates.

Creating a PKCS#10 certificate request

The general syntax for creating a PKCS#10 file is:

ssh-certtool [options] pkcs10 subject [keyUsage] [extendedKeyUsage]

Note: req is supported as a synonym for pkcs10.

The value you specify as subject defines the certificate's Subject field. The
subject name is required. Use the distinguished name syntax specified by
RFC2253. Use commas to separate Subject elements (RDNs). RDNs can be
specified using standard abbreviations (CN) or OIDs (2.5.4.3). Quotation
marks are required if the subject name contains embedded white space. For
example, "CN=Steve Kille,O=Isode Limited,C=GB".

The filename of the generated certificate request is based on the prefix
specified by the -o option, with .pkcs10 appended. The default filename of a
generated private key, when -o is not specified, is output.pkcs10.

To create a request using an existing private key use -p to specify the key.
To generate a new private key for the request, you must specify either key
type (-n), key size (-b) or both. The filename of the generated private key is
based on the prefix specified by the -o option, with .ssh2 appended. The
default filename of a generated private key, when -o is not specified, is
output.ssh2. If a key with the same name already exists, you are prompted
to overwrite it. If you elect not to overwrite it, ssh-certtool exits with a
return code of zero.

 A P P E N D I X Q

190 Reflection for Secure IT

You can use optional flags to set keyUsage and extendedKeyUsage fields.
Use commas, spaces or tabs to separate items. All Key Usage and Extended
Key Usage flags are marked as critical in the PKCS#10 request. Valid
keyUsage flags are digitalSignature, nonRepudiation, keyEncipherment,
dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly
and decipherOnly. If you omit this argument, the digitalSignature and
keyEncipherment flags are set by default. Valid extendedKeyUsage flags are
anyExtendedKeyUsage, serverAuth, clientAuth, codeSigning and
emailProtection. No extended key usage flags are set by default.

Creating a PKCS#12 package

The general syntax for creating a PKCS#12 package is:

ssh-certtool [options] pkcs12 [file1] ... [fileN]

This constructs a PKCS#12 package file containing one private key and
multiple certificates read from the file arguments. The PKCS#12 package
file contains one safe, which contains the private key and all the certificates.
The filename of the generated package file is based on the prefix specified
by the -o option, with .p12 appended. The default filename of the generated
PKCS#12 package, when -o is not specified, is output.p12. The PKCS#12
package is protected by an HMAC, and ssh-certtool prompts you for a
passphrase before creating the package.

File arguments containing private keys can be read in naked PKCS#8
format, in ssh2 PEM format, or in openSSH PEM format. If the key is
protected by a passphrase, ssh-certtool prompts for the passphrase. File
arguments containing certificates are recognized in both DER-encoded and
PEM-encoded format.

By default, the individual private key and certificates are saved into the
PKCS#12 output file using default PBE protection schemes. The default
scheme for key encryption is pbeWithSHA1And3-KeyTripleDES-CBC. The
default for safe encryption is pbeWithSHA1And40BitRC2-CBC format. You
can use the -z option to configure different PBE protection schemes.

OPTIONS

Options are available in both a single-character form (such as -o) and a
descriptive equivalent (--option). Single characters are shown here. To view
the descriptive equivalents, use the -h command line option.

-b bits

Specifies the key size used for generated keys. The default for RSA keys
is 2048 bits and for DSA keys is 1024 bits. The value for a DSA key must
be an integral multiple of 64. This option is valid for PKCS#10 file
creation only.

-c comment

Specifies a comment to include in the private key file. This option is
valid for PKCS#10 file creation only.

 Appendix Q ssh-certtool Command Reference 191

-d debug_level

Enables debug output. Use 1, 2, 3, or 99. (Values 4-98 are accepted, but
are equivalent to 3.)

-h

Displays a brief summary of command options.

-n algorithm

Specifies the algorithm used for key generation. Possible values are "rsa"
and "dsa". The default is "rsa". This option is valid for PKCS#10 file
creation only.

-o output_file_prefix

Specifies the first portion of the filename for output files. You can
include an absolute path to generate the file in a different location. The
default is "output". (The filename suffix is generated based on the file
type: the suffix for PKCS#10 files is .pkcs10, for PKCS#12 is.p12, and for
private keys is .ssh2.)

-p private_key

Specifies a private key to use in a certificate request. This option is valid
for PKCS#10 file creation only.

-P

Saves the private key with an empty passphrase. This option is valid for
PKCS#10 file creation only.

--passphrase passphrase

Specifies a passphrase for the private key. This option is valid for
PKCS#10 file creation only.

-V

Displays product name and version information and exits. If other
options are specified on the command line, they are ignored.

-z Key=Value

Specifies certificate options for PKCS#10 requests, and encryption
options for PKCS#12 packages.

For PKCS#10 requests, Key must be either DNS or Email (case-
insensitive). There should be no white space in this option, including
before or after the equal sign, unless the value literally contains white
space characters in its name. The DNS option sets the DNS Alt Name
extension. The Email option sets the EMail Alt Name extension. These
extensions are not marked as critical.

192 Reflection for Secure IT

For PKCS#12 packages, Key must be either KeyPBE or SafePBE (case-
insensitive). There should be no whitespace in this option, including
before or after the equal sign. KeyPBE sets the key encryption and hmac
scheme. SafePBE sets the safe encryption and hmac scheme. Values are
listed below. The default for KeyPBE is PBE-SHA1-3DES. The default
for SafePBE is PBE-SHA1-RC2-40. The long names in parentheses are
synonyms.

None

PBE-SHA1-RC4-128 (pbeWithSHA1And128BitRC4)

PBE-SHA1-RC4-40 (pbeWithSHA1And40BitRC4)

PBE-SHA1-3DES (pbeWithSHA1And3-KeyTripleDES-CBC)

PBE-SHA1-2DES (pbeWithSHA1And2-KeyTripleDES-CBC)

PBE-SHA1-RC2-128 (pbeWithSHA1And128BitRC2-CBC)

PBE-SHA1-DES (pbeWithSHA1AndDES-CBC)

PBE-SHA1-RC2-40 (pbeWithSHA1And40BitRC2-CBC)

PBE-MD2-RC2-64 (pbeWithMD2AndRC2-CBC)

PBE-MD5-RC2-64 (pbeWithMD5AndRC2-CBC)

EXAMPLES

To create a PKCS#10 request using a newly generated key:

ssh-certtool -n RSA -z DNS=steves.dns.server.com -z Email=steved@myorg.org
pkcs10 CN=steved,O=myorg.org,OU=rsit,C=US DigitalSignature,nonRepudiation
ServerAuth,ClientAuth

To create a PKCS#12 package file and specify encryption for the key and
safe:

ssh-certtool -z keyPBE=default -z safePBE=PBE-SHA1-RC4-40 -ofile pkcs12
id_rsa.crt id_rsa

winpki and pkid Command Reference

Use winpki (on Windows) or pkid (on UNIX systems) to configure, start,
and stop the PKI Services Manager service, and to check certificate validity
and allowed identities.

Synopsis

Windows:
winpki [command [command args]] [options...]

UNIX:
pkid [command [command args]] [options...]

command = start | stop | restart | reload | ping | validate <cert>

options = [-b path] [-c cert] [-d level] [-f file] [-h] [-i] [-k]

[-m path] [-p] [-o key=value] [-t host] [-u user] [-V] [-w]

Commands

start

Starts the service.

stop

Stops the service.

restart

Stops and restarts the service.

reload

Reloads the configuration without stopping the service. Note: Some
settings require a restart.

ping

Displays service status and the port used by the service.

validate certificate

Validates a certificate and optionally provides information about allowed
identities. The service must be running. For example, to determine if
sample.crt is valid (UNIX syntax):

pkid validate sample.crt

Use -u, -t, or -w after the certificate name to get information about
allowed identities for the specified certificate. For example, to determine
if the user joe can authenticate using sample.cer (Windows syntax):

winpki validate sample.cer -u joe

 A P P E N D I X R

194 Reflection for Secure IT

Options

-b path --baseDir path

Specifies the data directory used for PKI Services Manager
configuration.

-c cert --cert cert

Validates the specified certificate. This option is available when the
service is not running. Use the validate command to validate certificates
when the service is running.

-d level --debug level

Specifies the amount of information sent to the log. Allowed values are:
'error', 'warn', 'info', 'debug', and 'trace'. The default is 'error'.

-f file --config_file file

Launches using a non-default configuration file.

-h --help

Displays a brief summary of command options.

-i --init

This option is rarely needed. It initializes PKI Services Manager, which
creates a key pair for the server, and creates user data directories and
files. Initialization happens automatically during installation on UNIX
systems and on first run on Windows systems. Using this option has no
effect if your system is already initialized. Note: You can create new
keys by deleting the existing keys (pki_key and pki_key.pub), and then
using this option. Existing configuration files are not affected.

-k --check-config

Checks for errors in your configuration and map files and then quits.

-m path --migrate path

Migrates certificate authentication settings from Reflection and F-
Secure configuration files. If path specifies a directory, PKI Services
Manager looks for server (sshd2_config) and client (ssh2_config)
configuration files in that directory and migrates settings from those
files. If path specifies a file, PKI Services Manager migrates the settings
in the specified file. Full path information is required for both files and
directories. Note: If the pki_config file in the destination folder already
has a trust anchor configured, no migration occurs. This helps ensure
that the migration won't overwrite modifications you have already
configured.

 Appendix R winpki and pkid Command Reference 195

Settings are migrated to the pki_config and pki_map files used by PKI
Services Manager. If you use the -b switch, files with your migrated
settings are created in the specified directory. If you omit this switch,
the files are created in the default PKI Services Manager configuration
directory.

A migration log is created in the logs directory located in the PKI
Services Manager data directory. By default, this log records at a level of
'info' which shows if errors or warnings occurred. The level can be
elevated using -d.

-o key=value --option key=value

Sets any option that can be configured using a configuration file
keyword. Options configured this way override configuration file
settings. For a list of keywords and their meanings, see pki_config.
Syntax alternatives are shown below. Use quotation marks to contain
expressions that include spaces.

-o key1=value

-o key1="sample value"

-o "key1 value"

-o key=value1,value2

-o key="value1, value2"

To configure multiple options, use multiple -o switches.

-o key1=value -o key2=value

-p--showkey

Displays the public fingerprint and shows the full path and key name.

-t host --hostName host

Use this option after the certificate name following a validate command.
PKI Services Manager reads the map file(s) and reports whether the
specified host is an allowed identity for the host certificate being
validated.

-u user --userID user

Use this option after the certificate name following a validate command.
PKI Services Manager reads the map file(s) and reports whether the
specified user is an allowed identity for the user certificate being
validated. If you include a server name (in the form user@server), PKI
Services Manager reports on whether the user is allowed to
authenticate to the specified server. If you specify only a user name, PKI
Services Manager tests whether the user is allowed to authenticate with
this certificate without checking for host-specific conditions.

196 Reflection for Secure IT

-V --version

Displays the product name and version.

-w [host] --whoAmI [host]

Use this option after the certificate name following a validate command.
PKI Services Manager reads the identity map file(s) and returns a list
of all allowed identities for the certificate being authenticated. If you
specify a server name after this option, the list is limited to allowed
users for connections to that server. If no server name is specified, PKI
Services Manager doesn't check for server-specific conditions.

pkid_config Configuration File Reference

The Reflection PKI Services Manager console saves settings to the
configuration file. You can also view and edit this file manually. The default
file location is:

 UNIX
/opt/attachmate/pkid/config/pki_config

 Windows XP, Windows Server 2003:
\Documents and Settings\all users\Application
Data\Attachmate\ReflectionPKI\config\pki_config

 Windows 7, Windows Vista, Windows Server 2008:
\ProgramData\Attachmate\ReflectionPKI\config\pki_config

File Format

The configuration file consists of keywords followed by values. The value
can be separated from the keyword by tabs, spaces, or spaces and one '='.
Any line starting with a pound sign (#) is a comment. Any empty line is
ignored. Some keywords can appear multiple times, and these settings are
applied cumulatively. Changes to settings do not take effect until you reload
the settings or restart the service. (If a restart is required, that information
is given in the keyword description.)

The file includes a global section that contains settings that apply to all
validation queries. You can also create stanzas that configure certificate-
specific settings. The TrustAnchor keyword marks the beginning of each
trust anchor stanza. Settings beneath the TrustAnchor keyword apply only
to that trust anchor. The stanza ends at the next TrustAnchor keyword.

Some settings must be configured outside any trust anchor stanzas. These
settings apply to all validation queries. Where a setting is supported both
globally and within a stanza, the value within the trust anchor stanza
overrides the global value.

Keywords

AllowClientStats

Specifies whether PKI Services Manager allows clients to request PKI
Services Manager runtime statistics. Configure this keyword once,
outside any stanza. The allowed values are 'yes' and 'no'. The default is
'yes'.

AllowMD2Certificates

Allow certificates signed using the MD2 RSA hash. Configure this
keyword once, outside any stanza. The allowed values are 'yes' and 'no'.
The default is 'no'. You need to restart the service if you modify this
setting.

 A P P E N D I X S

198 Reflection for Secure IT

AllowMD5InFipsMode

Allow certificates signed using the MD5 hash, even when FIPS mode is
enabled. Configure this keyword once, outside any stanza. The allowed
values are 'yes' and 'no'. The default is 'yes'. You need to restart the
service if you modify this setting.

AllowVers1

Specifies whether PKI Services Manager allows version 1 certificates for
a trust anchor. Note: Intermediate certificates must be version 3
regardless of the value of this setting. Configure this keyword once,
outside any stanza. The allowed values are 'yes' and 'no'. The default is
'no'.

AllowWhoAmI

Specifies whether PKI Services Manager allows a client to query for the
mapped identity (using -w or --whoAmI) when using PKI Services
Manager to validate certificates. Configure this keyword once, outside
any stanza. The allowed values are 'yes' and 'no'. The default is 'yes'.

CertSearchOrder

A comma-separated list that specifies where PKI Services Manager
searches for intermediate certificates required to validate a certificate.
Listed locations are searched in order. The options are
'local','certserver', 'aia', and 'windows'. The default is 'local, certserver.'
(Note: If you select 'windows', PKI Services Manager uses only those
certificates that are installed for use by the local computer, not
certificates installed for the current user. To view and manage the local
computer certificates, use the Microsoft Management Console. Add the
Certificates Snap-in and configure it to manage certificates for the
computer account.) Configure this keyword once, outside any stanza.

CertServers

Specifies a server from which PKI Services Manager can retrieve
intermediate certificates when 'certserver' is included in the
CertSearchOrder list. You can specify either an HTTP or an LDAP
server. (For example: ldap://certserver:10389 or http://certserver:1080)
This keyword can be configured multiple times outside any stanza. The
values are cumulative.

CRLServers

Specifies a server from which PKI Services Manager can retrieve
Certificate Revocation Lists (CRLs) when 'crlserver' is included in the
RevocationCheckOrder list. You can specify either an HTTP or an
LDAP server. (For example: ldap://crlserver:10389 or
http://crlserver:1080.) This keyword can be configured multiple times
outside of any stanza and multiple times per stanza. The values are
cumulative.

 Appendix S pkid_config Configuration File Reference 199

ClientDebugging

Specifies whether the application that is requesting certificate validation
can request and receive debug messages from PKI Services Manager.
Configure this keyword once, outside any stanza. The allowed values are
'yes' and 'no'. The default is 'no'. Note: To view these messages you also
need to set a sufficiently detailed debug level in the calling application.
For the Reflection for Secure IT Windows server, specify "Protocol
details" or higher. For the Reflection for Secure IT UNIX clients and
servers, specify debug level 3 or higher.

EnforceDODPKI

Determines whether PKI Manager enforces settings that meet US
Department of Defense PKI requirements. The allowed values are 'yes'
and 'no'. The default is 'no'. When this setting is 'yes', the service will
not start unless the following conditions are met: FipsMode = yes;
AllowMD2Certificates = no; AllowMD5InFipsMode = no; AllowVers1 =
no; CertSearchOrder does not include 'windows'; and
RevocationCheckOrder has at least one option specified and does not
include 'none'.

ExplicitPolicy

Determines whether PKI Services Manager enforces application policies.
This keyword can be configured once outside of any stanza and once per
stanza. The allowed values are 'yes' and 'no'. The default is 'no'. If the
value is 'yes' you must specify one or more application policies to be
enforced using the PolicyOID keyword. Each application policy is
specified with a Policy Identifier (OID). (Note: Policies may also be
required by the certificate being presented or by a certificate within the
chain of trust.)

FipsMode

Enforces security protocols and algorithms that meet FIPS 140-2
standards. The allowed values are 'yes' and 'no'. The default is 'yes'.
Configure this keyword once, outside any stanza. You need to restart the
service if you modify this setting.

KeyFilePath

Specifies the path to the private key used to identify Reflection PKI
Services Manager. When no path is specified, the path or file name is
relative to the PKI Services Manager configuration directory. Configure
this keyword once, outside any stanza. This setting is required. If
KeyFilePath is not specified, or no key is present, the PKI Services
Manager service will not start. The default is 'pki_key'. You need to
restart the service if you modify this setting. PKI Services Manager
creates a key pair when it initializes the settings, but you can also use a
key pair created by ssh-keygen (or another tool). Only RSA keys are
allowed.

200 Reflection for Secure IT

ListenAddress

Specifies the port on which PKI Services Manager listens for validation
requests. The syntax is host:port. You can specify the host name using
either an IP address or a host name. IP addresses can be in either IPv4
or IPv6 format. IPv6 addresses must be enclosed in square brackets, for
example [::D155:AB63]:18081. The default is 0.0.0.0:18081, which
configures the server to listen on port 18081 using any available network
adapter. This setting is required. You need to restart the service if you
modify this setting.

LocalStore

The local store is used to hold items that are required for certificate
validation. Depending on your configuration, this may include trusted
root certificates, intermediate certificates, and/or Certificate Revocation
Lists (CRLs). You can specify directories or files. When a directory is
specified, all files in the specified directory and any subdirectories are
included in the store. Files must be binary or base 64 encoded X.509
certificates or CRLs. This keyword can be configured multiple times
outside any stanza. The values are cumulative. This setting is required.

LogFacility

Specifies the output location for log messages. Allowed values are 'file'
and 'none'. The default is 'file'. Log files are created daily and saved to a
directory called logs located in the PKI Services Manager data
directory. Configure this keyword once, outside any stanza. You need to
restart the service if you modify this setting.

LogLevel

Specifies the amount of information sent to the log. Allowed values are:
'error', 'warn', 'info', 'debug', and 'trace'. The log can contain both
auditing messages (labeled "[audit]"), and debug messages (labeled
"[debug]"). Auditing messages provide information about both successful
and unsuccessful validation attempts. Debug messages are designed to
help in troubleshooting. The default log level is 'error'. At this level,
auditing messages are sent to the log, but debug messages are sent only
if a PKI Services Manager error occurs, generally because PKI Services
Manager is not correctly configured. The other options include audit
messages plus increasing levels of detail in the debug messages.
Configure this keyword once, outside any stanza.

MapFile

Specifies the location of the PKI Services Manager map file. Use the
map file to configure which users or computers are allowed to
authenticate with a valid certificate. When no path is specified, the path
or file name is relative to the PKI Services Manager configuration
directory. This setting is required. This keyword can be configured once
outside of any stanza and once per stanza.

 Appendix S pkid_config Configuration File Reference 201

MaxLogFiles

Specifies the maximum number of log files to create. A new log file is
automatically created daily. When the maximum is reached, the oldest
log is removed. The default is 10. Configure this keyword once, outside
any stanza. You need to restart the service if you modify this setting.

NetworkTimeout

Specifies the timeout for any network download: LDAP, HTTP, or
OCSP. Units are milliseconds. The default is 20000. Configure this
keyword once, outside any stanza. Configure this keyword once, outside
any stanza.

OCSPCertificate

Specifies a certificate that can be used to verify the signature of the
OCSP response. This is needed only if the OCSP response does not
include the signer's certificate. The value can be either a certificate file
or the Subject value of the certificate (for example OcspCertificate = "CN
= Secure CA, O = Secure Corporation, C = US"). If you use the Subject
value, the certificate must be in the local store. This keyword can be
configured multiple times outside of any stanza and multiple times per
stanza. The values are cumulative.

OCSPResponders

Specifies the address of an OCSP responder to use for checking
certificate revocation when 'ocsp' is included in the
RevocationCheckOrder list. Use an HTTP address to identify the
responder. (For example: http://ocsp.myhost.com:1080.) This keyword can
be configured multiple times outside of any stanza and multiple times
per stanza. The values are cumulative.

PolicyOID

Specifies an allowed Policy Identifier (OID) to use when application
policies are in force, either because ExplicitPolicy is 'yes' or because
policies are required by the certificate being presented or by a certificate
within the chain of trust. When ExplicitPolicy is 'yes', the specified OID
must match at least one of the OIDs in the final policy set of the
certificate chain. The value 2.5.29.32.0 allows use of any Policy Identifier.
(Note: The default value is 'no-policy'. When ExplicitPolicy is set to 'yes',
you must change PolicyOID to indicate which policy or policies are
allowed; if ExplicitPolicy is set to 'yes' and PolicyOID is set to 'no-policy',
no certificate can pass validation.) This keyword can be configured
multiple times both outside any stanza and within a stanza. Configured
values are cumulative.

202 Reflection for Secure IT

RevocationCheckOrder

A comma-separated list that specifies which sources are used to check
for certificate revocation and the order in which these checks occur. The
options are 'ocsp', 'cdp', 'crlserver', 'local', and 'none'. The default is
'local'. Note: If you specify just 'none', no revocation checking occurs. If
you specify 'none' with other options, PKI Services Manager attempts to
determine the revocation status using the specified options until it
reaches 'none'. If the certificate revocation status is still unknown at this
point, authentication is allowed. This keyword can be configured once
outside of any stanza and once per stanza.

StrictMode

Specifies whether strict checking rules (as defined in RFC 3280) are
used when validating certificates. Many certificates cannot pass strict
checks. The allowed values are 'yes' and 'no'. The default is 'no'. This
keyword can be configured once outside of any stanza and once per
stanza.

TrustAnchor

Specifies a certificate to use as the final trust point in a certificate chain
of trust that Reflection for Secure IT validates. This can be an
intermediate CA certificate, a root CA certificate, or a self-signed
certificate (which can only validate itself). It can not be a user
certificate or host certificate.. The value can be either a certificate
filename or the contents of the Subject field defined in the certificate
(for example TrustAnchor = "CN = Secure CA, O = Secure Corporation, C =
US"). If you specify a certificate filename and include full path
information, the trust anchor is used regardless of how you configure
the CertSearchOrder keyword. If you specify a certificate filename
without including full path information, CertSearchOrder must include
'local'; and PKI Services Manager looks for the certificate in your local
store. If you specify the contents of the certificate's Subject field,
CertSearchOrder must include 'local' and/or 'windows'; and PKI
Services Manager looks for the certificate in your local store and/or
Windows certificate store. This setting is required. To configure
multiple trust anchors, add additional TrustAnchor lines.

Note: On Windows systems, you can view the Subject value of
certificates in your store using the PKI Services Manager console. On
UNIX systems, you can use ssh-certview(1) to view this information.

Any keywords under a TrustAnchor setting create a stanza. The values
you configure within a trust anchor stanza are specific to that trust
anchor.

pki_mapfile Map File Reference

Reflection PKI Services Manager binds certificates to one or more allowed
identities using mapping rules. Typically, allowed identities are users or
hosts. To authenticate a user correctly, you need to define a rule that links
information in the validated certificate to an allowed user account. The
mapper provides flexible options for mapping certificates to names. You can
specify allowed names explicitly in your rules, or define rules that extract
information, such as user or host name, from a certificate. By using these
options, you can bind identities to certificates without having to create a
separate rule for each certificate.

The default map filename and location is:

 UNIX
/opt/attachmate/pkid/config/pki_mapfile

 Windows XP, Windows Server 2003:
\Documents and Settings\all users\Application
Data\Attachmate\ReflectionPKI\config\pki_mapfile

 Windows 7, Windows Vista, Windows Server 2008:
\ProgramData\Attachmate\ReflectionPKI\config\pki_mapfile

Note: On Windows systems, you can modify the map file from the
Reflection PKI Services Manager console using the Identity Mapper
pane.

File Format

The map file consists of keyword settings and rules. Each rule is a single
line and is independent of other rules. The format of a rule is:

{Allowed-Identity} [Conditional Expression]

After a certificate is determined to be valid, rules are processed in order
(based on rule type then sequence). If the certificate meets the
requirements defined in the conditional expression (or if the rule has no
condition), the allowed identities specified in that rule are allowed to
authenticate. No additional rules are applied after the first match.

Within the map file, you can use the RuleType keyword to apply different
mapping criteria based on whether a user or host presents the certificate.
Note: Rule type determines the order in which rules are processed. The
order for processing user certificates is: user-address, user, none. The order
for processing host certificates is: host, none. Within each rule type, rules
are processed in order from top to bottom.

 A P P E N D I X T

204 Reflection for Secure IT

Allowed Identity Set

The allowed identity set is a required component of a rule. Allowed
identities can be specified using a combination of constant values and values
extracted from the certificate. The set of allowed identities can take
multiple constant values, extracted values, or a combination of both.

 Using constant values to define allowed identities

Constant values are literal strings. Use white space to delimit separate
values. (If an allowed name includes spaces, enclose it in quotes.) For
example, the following rule uses literal strings to allow root, joe, and fred
smith to authenticate with any valid certificate:

{ root joe "fred smith" }

The format "domain\user" is required for Windows domain users, for
example:

{ windomain\joe "windomain\fred smith"}

Note: After PKI Services Manager determines that a certificate meets the
condition defined in a rule, rule processing stops. In both examples above, no
conditions are defined. This means the rule will be applied to any valid
certificate and no subsequent rules will be processed. To create a similar
rule, you would need to include all allowed identities within the same rule.

Two asterisks used alone { ** } act as a wildcard for defining the allowed
identity set. This option may be useful for testing, but should otherwise be
used only with extreme caution. If you use this wildcard in a user rule, any
user presenting a valid certificate is allowed to authenticate to any user
account on the server. This creates a major security risk by allowing access
to accounts with root, administrator, or power user privileges without
requiring a password. If you use this wildcard in a host rule, any server with
a valid certificate is accepted by the client. If you do choose to use the
wildcard, consider limiting access using other options:

 Use the wildcard only with certificates signed by Certification
Authorities that you control.

 Use the wildcard only in rules that have very restrictive conditions.

 Use the wildcard only in server-specific user rules (those whose
RuleType is user-address).

 Limit user account access on the server side. For example, on a Secure
Shell server, you might define sftp chroot jails and allow no command
shell or remote command access.

 Appendix T pki_mapfile Map File Reference 205

 Using values extracted from the certificate

Use extracted values to construct the allowed identity set based on the
contents of the certificate presented for authentication. Extracted values
must be preceded and followed by "%". For example, to allow authentication
by the host specified in the Host portion of the UPN field:

{ %UPN.Host% }

You can also combine literal strings with extracted identities. (You can
prepend a literal string to an extracted identity, and/or append a literal
string, but you cannot combine more than one extracted value to form a
single identity.) The following example adds a Windows domain name to an
extracted user identity:

{ windomain\%UPN.User% }

Note: If the extracted identity evaluates to an empty result, the entire
concatenated string is deemed to be empty and is not included in the set of
allowed identities. If the entire set of allowed identities is empty, the rule is
deemed to have failed and processing continues to the next rule.

Supported certificate fields are:

Subject

The Subject field defined in the certificate. The comparison is done
following X.500 rules (not as a string comparison). For a successful
match, the format must follow standards described in RFC 2253. To be
compliant with this standard, Subject and Issuer fields start with the
Common Name (for example, "CN = Secure CA, O = Secure Corporation,
C = US"). On UNIX systems, you can use the ssh-certview utility to
obtain the Subject value in this format. On Windows systems, copy the
Subject contents from the Details tab of the certificate viewer, paste to
an editor, and then replace new line characters with commas.

Subject.CN

The Common Name portion of the Subject field, if present.

Subject.Email

The email attribute part of the Subject, if present.

DNS

The DNS part of a SubjectAltName, if present.

UPN

The “otherName” representation of the SubjectAltName field, with the
OID of 1.3.6.1.4.1.311.20.2.3 (UPN OID), if present.

UPN.User

The userID portion of the UPN field.

206 Reflection for Secure IT

UPN.Host

The host portion of the UPN field.

Email

The representation of SubjecAltName as defined in RFC 822.

Email.User

The userID portion of Email.

Email.Host

The host portion of Email.

SerialAndIssuer

The certificate serial number (hex encoded) and value of the certificate's
Issuer field in this format:

serial_number Issuer

Use white space to separate the serial number from the issuer. For
example:

461D07A8 CN = Secure CA, O = Secure Corporation, C = US

Cert

This indicates the entire certificate. The Operation must be Equals and
the argument must be a file path to a certificate. Note: The Mapper does
not use the certificate store defined by Reflection PKI Services
Manager.

subst

This option is available when the conditional expression within a rule
uses either Regex or Extern.

With Regex, use subst in combination with any regular expression that
has a capturing group, which has been identified using round brackets
(). If the regular expression includes an exact match to a specified
certificate field, the value of the first capturing group in the expression
replaces %subst% in the allowed identity set.

With Extern, use subst as a placeholder for the value returned by the
external application.

 Appendix T pki_mapfile Map File Reference 207

Conditional Expression

When a conditional expression follows the {Allowed-Identity}, the allowed
identities can authenticate only if the conditional expression is true. The
use of a conditional expression is optional, but in most cases is
recommended. If no conditional expression is included, the allowed
identities can authenticate with any valid certificate.

After a certificate is determined to be valid, rules are processed in order
(based on rule type then sequence). If the certificate meets the
requirements defined in the conditional expression (or if the rule has no
condition), the allowed identities specified in that rule are allowed to
authenticate. No additional rules are applied after the first match.

The syntax for a conditional expression is:

Field Operation Argument

For Field, specify any of these supported certificate fields (described above):
Subject, Subject.CN, Subject.Email, DNS, UPN, UPN.User, UPN.Host,
Email, Email.Host, SerialAndIssuer, Cert, or subst.

For Argument, specify a string value.

For Operation, use one of the following:

Equals

Checks for absolute equality between the Field value and the Argument
string. For DNS, UPN and Email options, the comparison is case-
insensitive.

Contains

Checks if the Field value is contained anywhere within the Argument
string. For DNS, UPN and Email options, the comparison is case-
insensitive.

Regex

Applies the Argument as a regular expression to the Field. If the regular
expression includes an exact match to the Field contents, the condition
is true. If the set of allowed identities contains the string %subst%, the
first capturing group (if defined) of the Regex match is inserted.

Extern

Uses an external application to test the condition. Use Argument to point
to the application. Use %subst% in the allowed identity set as a
placeholder for the value returned by the external application. If the
match within the external application is successful, it should exit with
status 0; a non-zero return means an unsuccessful match.

208 Reflection for Secure IT

Sample rules with conditional expressions:

{ %UPN.Email% } Subject.CN Equals acme.com

{ joep } Subject Contains "Joe Plumber"

Rule Type Stanzas

Rule types apply different mapping criteria based on whether the validated
certificate is a user certificate or a host certificate. Use the RuleType
keyword to create a new stanza for each supported type. A stanza ends at
the next RuleType keyword or the end of the file. The format is:

RuleType type

Valid rule types are:

none

The rule applies to both hosts and user certificates.

host

The rule applies to host certificates only.

user

The rule applies to user certificates only.

user-address = server

The rule applies only to user certificates authenticating to the specified
server. Note: When PKI Services Manager evaluates a user-address
rule, it uses the server name (not the DNS host name) of the server the
user is connecting to. The server sends its name to PKI Services
Manager when it requests validation of a user certificate, and PKI
Services Manager uses that name when applying the user-address rule.
To determine the host name that is sent, you can enter the hostname
command from a Windows DOS window or from a UNIX terminal
session.

For example, to create rules that apply only to users connecting to the
server acme:

RuleType user-address=acme

Note: Rule type determines the order in which rules are processed. The
order for processing user certificates is: user-address, user, none. The order
for processing host certificates is: host, none. Within each rule type, rules
are processed in order from top to bottom.

 Appendix T pki_mapfile Map File Reference 209

Keywords

DynamicFile

Specifies whether PKI Services Manager reloads the map file every time
it checks for allowed identities. The allowed values are 'yes' and 'no'. The
default is 'no'.

ExternTimeout

Sets the timeout for rules that use the Extern option.

RuleType

Marks the beginning of a rule type stanza, which can be used to apply
different mapping criteria based on whether a user or host presents the
certificate. The allowed values are 'user', 'host', 'none', and 'user-address
= server'. The default is 'none'.

Sample Mapping Rules

Rule What happens

{ guest } Because no condition is
included, all valid certificates
are mapped to the user
"guest". This can serve as a
default rule. A rule like this
should go at the end of the
rule list to ensure that all
other rules are processed first.

{ fred.jones } UPN.user Equals "fred" If the UPN representation of
SubjectAltName is present, and
the user part is equal to “fred”,
the set of allowed identities is
fred.jones.

{ %UPN.user% } UPN.host Equals "acme.com" If a certificate has a UPN
representation of
SubjectAltName, and the host
name part is "acme.com", the
user name part of the UPN is
returned as the set of allowed
identities.

{ guest %UPN.user% } If the UPN is set, the user part
is included in the set of allowed
identities (along with "guest").
Otherwise the set of allowed
identities is "guest". Because
there is no condition, this rule
applies to any valid certificate.

{ fred root } Subject.CN Contains "Fred Jones" If the CN of the certificate
contains "Fred Jones", the set of
allowed identities has two
values: "fred" and "root".

{ %subst% } Subject.CN Regex [a-zA-Z\.]*([0-9]) Sets the allowed identity equal
to the first numerical string
within the common name
portion of the Subject field. For
example, if the CN is
"joe.smith.12345", the allowed
identity is set to "12345".

{ elmer.foo.com } Subject.CN Contains "elmer" Sets the allowed identity to the
fully-qualified domain name
"elmer.foo.com" from a
certificate that contains the
short name "elmer".

 A P P E N D I X U

 Appendix U Sample Mapping Rules 211

Rule What happens

{ bob } Cert Equals /temp/certs/bob_cert.crt Compares the incoming
certificate to the one locally
stored. If they are equal, the
allowed identity set is "bob".

{ %subst% } Subject.CN Extern /bin/myapp PKI Services Manager sends
the Common Name portion of
the Subject field to the
application "/bin/myapp". If the
exit code of the called
application equals 0, the allowed
identity is set equal to the
returned result.

{ %UPN.User% } UPN Extern /bin/ldap-app In this case, an exit-code of 0
from the external application
serves as confirmation that the
UPN is an authorized user.

{ %Subject.CN% %DNS% } Sets the allowed identity set to
include the contents of either
the Subject.CN field or the DNS
part of SubjectAltName.

{ windomain\%UPN.User% } Allows users from the specified
Windows domain name to
authenticate if their user name
matches the UPN user name.

Sample Map File with RuleType Stanzas
RuleType user

the following rules are evaluated for user certificates only:

{ scott } CN Contains acme

{ joe } CN Equals acme

{ guest }

RuleType host

The following rule is evaluated for host certificates only:

{ elmer.acme } CN Contains elmer

RuleType user-address=myserver

The following rule is evaluated only when myserver

requests validation of a user certificate:

{ good %subst% } Regex UPN "([A-Za-z0-9\.-])@[*.]"

RuleType none

"none" is the default if no RuleType is specified.

If no rule is successfully applied from "user" or "host",

this rule is evaluated.

{ good } SerialandIssuer contains 123 CN=foo

 A P P E N D I X V

PKI Settings Migration

Review the information below if you configured certificate authentication
using Reflection for Secure IT 6.x or F-Secure. Some certificate settings
continue to be supported in Reflection for Secure IT UNIX Client and
Server settings files. Others need to be migrated to the Reflection PKI
Services Manager settings file. You can use the pkid command with the -m
option to migrate settings from Reflection for Secure IT 6.x or F-Secure
settings files.

Note: For details about the -m option, refer to the pkid command reference
(page 193).

The following tables summarize how prior versions settings are handled.
The entries under Status describe the effect of prior version keywords in
your current version settings files. These entries have the following
meanings:

 Supported: The keyword has the same meaning as it did in prior
versions.

 Deprecated: The keyword continues to have an effect, but it's meaning
may have changed.

 Ignored: The keyword has no effect in current Reflection for Secure IT
settings file. These settings need to be migrated to PKI Services
Manager settings files. Refer to the migration log for additional
information.

 Not supported: The keyword cannot be used in current version settings
files. It has no meaning and causes an error if present.

Client Settings

Prior version
keyword

Status

Migrated?

Equivalent
PKI Services Manager keyword

HostCA Deprecated Yes TrustAnchor

HostCANoCRLs Deprecated Yes TrustAnchor
RevocationCheckOrder = none

HostCertNameCheck Supported No --

LDAPServers Ignored Yes CertServers

CRLServers

(All servers are migrated to
both keywords)

LocalPKI Ignored Yes LocalStore

 A P P E N D I X W

214 Reflection for Secure IT

Prior version
keyword

Status

Migrated?

Equivalent
PKI Services Manager keyword

OCSPResponder Ignored Yes OCSPResponders

RevocationChecks Ignored Yes RevocationCheckOrder

RevocationCA Ignored Yes OcspCertificate

Server Settings

Prior version
keyword

Status

Migrated?

Equivalent
PKI Services Manager keyword

HostCA Deprecated Yes TrustAnchor

HostCANoCRLs Deprecated Yes TrustAnchor
RevocationCheckOrder = none

HostCertificateFile Supported No --

DynamicMapFile Ignored Yes DynamicFile

(This keyword is configured in
pki_mapfile.)

ExternalMapper Ignored Yes Supported in map file rules by
using the Extern option in the
conditional expression.

ExternalMapperTimeo
ut

Ignored Yes ExternTimeout

(This keyword is configured in
pki_mapfile.)

LDAPServers Ignored Yes CertServers

CRLServers

(All servers are migrated to both
keywords)

LocalPKI Ignored Yes LocalStore

OCSPResponder Ignored Yes OCSPResponders

RevocationChecks Ignored Yes RevocationCheckOrder

RevocationCA Ignored Yes OcspCertificate

MapFile Ignored Yes MapFile

OcspMode Ignored Yes RevocationCheckOrder

PKI Ignored Yes TrustAnchor

PkiDisableCrls Ignored Yes RevocationCheckOrder =none

 Appendix W PKI Settings Migration 215

Prior version
keyword

Status

Migrated?

Equivalent
PKI Services Manager keyword

PkiIgnoreBasicConstr
aints

Ignored Yes StrictMode

SocksServer Not
supported

No --

PKI Services Manager Return Codes

Reflection PKI Services Manager returns the following codes to the
application requesting validation services.

 Code 0 = No errors, successful validation.

 Codes 1-10 = Command-line errors, either with winpki or pkid.

 Codes 11-19 = Network or protocol errors.

 Codes 21-29 = Validation errors.

 Codes 31-39 = Mapper errors (certificate is valid but could not be
mapped).

 Codes 41-49 = CRL or other revocation errors

Code Meaning

0 No errors.

1 General error, unknown cause.

2 Syntax error with the command, improper arguments.

3 PKI Services Manager is already running.

4 Error in the configuration file.

5 Timeout occurred while executing the command.

6 Network error (for example, cannot connect to PKI Services
Manager).

7 Access denied, user does not have permission to run the
command.

8 System error . This is an internal error. Re-run with –d
switch to see what happened.

9 Migration or initialization failed. See migration error log.

11 Unknown command was requested by the calling
application.

12 An exception was thrown by PKI Services Manager. For
more information, see the PKI Services Manager event log.

13 Syntax error with the command or packet sent to PKI
Services Manager.

14 Command was ignored (not currently used, internal error).

 A P P E N D I X X

 Appendix X PKI Services Manager Return Codes 217

Code Meaning

0 No errors.

15 Processing error. The certificate sent to PKI Services
Manager is not encoded correctly.

16 Command failed (commands are: stop, reload, reconfigure).

17 Signature mismatch. Sender did not sign with a matching
key.

18 Format error. The ASN protocol was not properly
formatted

19 PKI Services Manager is in FIPS mode and the certificate is
not valid in that mode

21 Certificate is invalid (expired, not signed, bad key, etc.)

22 No path. The issuing certificate could not be located.

23 Certificate is revoked.

24 No trust anchor. The path did not terminate to a known
trust anchor.

25 Other validation error. Policy or other constraints failed.

26 Path length to the end certificate exceeded the CA path
length constraint.

27 Certificate policy is invalid or does not match assertions in
effect.

28 Certificate's signature does not match.

29 Unknown critical extension was encountered in a certificate
or CRL.

31 Identity requested did not match allowed identities.

32 No identities are allowed for this certificate (no maps exist
that match).

33 Calling application did not send an identity for matching
(client-side error).

34 Certificate is valid, but requested WhoAmI processing

41 Unknown CRL processing error

42 No base for a delta CRL.

43 CRL has expired.

44 Cannot verify signature or it is bad.

45 Unknown CRL extension that is marked critical.

218 Reflection for Secure IT

Code Meaning

0 No errors.

46 Mismatch of IDP field in CRL.

47 No CRL available.

Glossary of Terms

A
authentication

The process of reliably determining the identity of a communicating party.
Identity can be proven by something you know (such as a password),
something you have (such as a private key or token), or something intrinsic
about you (such as a fingerprint).

B
bandwidth

The rate of transmission of data across the network; the maximum amount
of information (Kbits/second or Mbits/second) that can be transmitted
along a channel.

C
cipher

A cipher is an encryption algorithm. The cipher you select determines
which mathematical algorithm is used to obscure the data being sent after a
successful Secure Shell connection has been established.

D
data integrity

The assurance that data has not been changed from its original source.
Methods to preserve data integrity are designed to ensure that data has not
been accidentally or maliciously modified, altered or destroyed.

digital signature

Used to confirm the authenticity and integrity of a transmitted message.
Typically, the sender holds the private key of a public/private key pair and
the recipient holds the public key. To create the signature, the sender
computes a hash from the message, and then encrypts this value with its
private key. The recipient decrypts the signature using the sender's public
key, and independently computes the hash of the received message. If the
decrypted and calculated values match, the recipient trusts that the sender
holds the private key, and that the message has not been altered in transit.

220 Glossary of Terms

E
encryption

Encryption is the process of scrambling data by use of a secret code or
cipher so it is unreadable except by authorized users. Encrypted data is far
more secure than unencrypted data.

G
GSSAPI (Generic Security Services Application Program Interface)

An application programming interface that provides programs with access
to security services.

H
hash

Also called a message digest, a hash or hash value is a fixed-length number
generated from variable-length digital data. The hash is substantially
smaller than the original data, and is generated by a formula in such a way
that it is statistically unlikely that some other data will produce the same
hash value.

K
Kerberos

A protocol that uses a trusted third party to enable secure communications
over a TCP/IP network. The protocol uses encrypted tickets rather than
plain-text passwords for secure network authentication.

L
latency

The time delay between when an action is initiated and when its effect is
detectable. In a network, a delay in the reception of data packets can be
caused by several factors, such as the transmission medium, and the
number of network devices between the sending and receiving points. In
general, the greater the physical distance between your workstation and
your X client host, the greater the chance of encountering latency.

 Glossary of Terms 221

M
MAC (Message Authentication Code)

Used to verify that data is not changed in transit, a MAC is a hash created
using an arbitrary-length packet of data and a shared secret key. The
sending and receiving party compute the MAC independently for each
packet of transferred data using the shared key and an agreed-upon
algorithm. If the message has changed in transit, the hash values are
different and the packet is rejected.

P
passphrase

A passphrase is similar to a password, except it can be a phrase with a
series of words, punctuation, numbers, white space, or any string of
characters. Passphrases improve security by limiting access to secure
objects, such as private keys and/or a key agent.

PKCS

PKCS (Public Key Cryptography Standards) is a set of standards devised
and published by RSA laboratories that enable compatibility among public
key cryptography implementations. Different PKCS standards identify
specifications for particular cryptographic uses. Reflection for Secure IT
UNIX Client and Server uses the following PKCS standards:

 PKCS#7 can be used to sign and/or encrypt messages. It can also be
used to store certificates and to disseminate certificates (for instance as
a response to a PKCS#10 message). You can use ssh-keygen to extract
certificates from a PKCS#7 file.

 PKCS#10 is used for certificate requests to a Certificate Authority
(CA). You can use ssh-certtool to create PKCS#10 files.

 PKCS#12 is used for storage and transportation of certificates and
associated private keys. Files in this format typically use a *.pfx or *.p12
extension. Reflection for Secure IT supports authentication using
certificates and keys stored in this format.

port forwarding

A way to redirect unsecured traffic through a secure SSH tunnel. Two
types of port forwarding are available: local and remote. Local (also called
outgoing) port forwarding sends outgoing data sent from a specified local
port through the secure channel to a specified remote port. You can
configure a client application to exchange data securely with a server by
configuring the client to connect to the redirected port instead of directly to
the computer running the associated server. Remote (also called incoming)
port forwarding sends incoming data from a specified remote port through
the secure channel to a specified local port.

222 Glossary of Terms

public key/private key

Public keys and private keys are pairs of cryptographic keys that are used
to encrypt or decrypt data. Data encrypted with the public key can only be
decrypted with the private key; and data encrypted with the private key can
only be decrypted with the public key.

R
regular expression

Often abbreviated as regex, a regular expression is a string of characters
that describes one or more matching strings. Within a regular expression,
some characters have a predefined meaning that determines what qualifies
as a match. For example, the regular expression "t.*t" matches any word
that starts and ends in the letter t, while the regular expression "text"
matches only itself.

S
Secure Shell

A protocol for securely logging onto a remote computer and executing
commands. It provides a secure alternative to Telnet, FTP, rlogin, or rsh.
Secure Shell connections require both server and user authentication, and
all communications pass between hosts over an encrypted communication
channel. You can also use Secure Shell connections to forward X11 sessions
or specified TCP/IP ports through the secure tunnel.

socket

The combination of a host name (IP address or DNS name) and a port
number. This creates a unique identifier that a client application uses as an
end point of communications.

T
trust anchor

A certificate that can be used as the final trust point in a certificate chain
of trust. Note: PKI Services Manager validates certificates using only those
trust anchors that have been explicitly configured for use by PKI Services
Manager. You can configure a trust anchor using a root CA certificate, an
intermediate CA certificate, or a self-signed certificates (one which can only
validate itself).

Index

A
access control

access control settings • 95

client access • 98

directory and file permissions •
151

group access • 98

subconfiguration files • 30

user access • 97

using allow and deny keywords •
96

auditing

message logs • 103

Solaris (BSM) • 105

authentication

client • 51

server • 37

B
basics

getting started • 19

understanding secure shell • 24

C
certificate authentication

about server authentication • 41

about user authentication • 57

configure server authentication •
44

configure user authentication • 59

obtain authentication certificates
• 42

certificates

ssh-certtool • 189

ssh-certview • 187

cipher

configure • 34

defined • 219

client

authentication methods • 51

client configuration files • 27

client file list • 112

keywords • 118

make a client connection • 21

client host access

configure client host access • 98

subconfiguration files • 30

configuration files

client configuration files • 27

host stanzas • 28

server configuration files • 29

subconfiguration files • 30

D
debugging

client debugging • 101

server debugging • 102

directory and file permissions • 151

E
encryption

ciphers and macs • 34

data encryption • 33

F
file transfer

resume • 76

scp • 75

secure file transfer • 71

sftp • 71

sftp batch files • 73

sftp command list • 176

troubleshooting slow transfer •
109

use sftp interactively • 72

files

client file list • 112

recommended and required
permissions • 151

server file list • 114

fingerprint

display host key fingerprint • 41

unknown host key prompt • 21

FIPS Mode • 35

forwarding

configure • 89

introduction • 83

local • 84

remote • 87

settings • 92

X protocol • 91

 Index 224

G
group access • 98

GSSAPI

configure Kerberos authentication
• 48

Kerberos authentication • 47

system requirements • 47

H
host access

configure client host access • 98

subconfiguration files • 30

host key

add to client known hosts list • 39

create a new host key • 39

display host key fingerprint • 41

migration of existing key • 7

unknown host key prompt • 21

host stanzas • 28

HP-UX Trusted Systems • 69

I
installation

HP-UX • 14

IBM AIX • 15

installed features • 7

Linux • 10

replace existing Secure Shell • 9

Sun Solaris • 12

system requirements • 7

K
Kerberos (Secure Shell connections)

configure Kerberos authentication
• 48

Kerberos authentication • 47

system requirements • 47

key agent

ssh-add command line options •
181

ssh-agent command line options •
183

using the key agent • 56

key authentication

configure public key
authentication • 54

create a new host key • 39

overview • 37

troubleshooting • 107

unknown host key prompt • 21

keywords

client • 118

server • 132

known hosts

add a key to client • 39

L
local port forwarding

configure • 89

overview • 84

settings • 92

logging

client debugging • 101

server auditing • 103

server debugging • 102

M
MACS

configure • 34

defined • 221

MaxConnections • 95

migration

migrate settings • 16

migration of existing key • 7

P
PAM

configure PAM • 63

introduction • 62

passwords

configure password authentication
• 52

permissions

protecting files and directories •
151

PKI

configure server authentication •
44

configure user authentication • 59

install PKI Services Manager • 17

pki_config configuration file
reference • 197

pki_map map file reference • 203

pkid command reference • 193

port forwarding

configure • 89

225 Index

introduction • 83

local • 84

remote • 87

settings • 92

X protocol • 91

public key authentication

configure public key
authentication • 54

create a new host key • 39

overview • 37

troubleshooting • 107

unknown host key prompt • 21

R
remote port forwarding

configure • 89

overview • 87

settings • 92

resume • 76

RSA SecureID authentication

configure • 67

overview • 67

S
scp

command line options • 167

getting started • 23

overview • 75

resume • 76

Secure Shell

understanding Secure Shell • 24

SecurID authentication

configure • 67

overview • 67

server

authentication • 37

keywords • 132

server configuration files • 29

server file list • 114

start and stop • 19

subconfiguration files • 30

sftp

command line options • 172

getting started • 23

overview • 71

resume • 76

sftp batch files • 73

sftp command list • 176

use sftp interactively • 72

Solaris

auditing (BSM) • 105

ssh

command line options • 154

escape sequences • 161

exit values • 162

ssh2_config

client configuration files • 27

client configuration keywords •
118

host stanzas • 28

ssh-add command line options • 181

ssh-agent

ssh-agent command line options •
183

using the key agent • 56

ssh-certtool

command reference • 189

create certificate requests • 42

ssh-certview • 187

sshd2_config

server configuration files • 29

server configuration keywords •
132

subconfiguration files • 30

ssh-keygen

command line options • 163

create a new host key • 39

display host key fingerprint • 41

StrictModes

file and directory permissions •
151

subconfiguration files • 30

syntax

command line • 29

configuration file • 28

system requirements • 7

T
troubleshooting

client debugging • 101

public key authentication • 107

server debugging • 102

slow transfer • 109

Trusted Systems on HP-UX • 69

tunneling

configure • 89

introduction • 83

 Index 226

local • 84

remote • 87

settings • 92

X protocol • 91

U
uninstall

HP-UX • 14

IBM AIX • 15

Linux • 10

Sun Solaris • 12

upgrade

migrate settings • 16

replace existing Secure Shell • 9

user access

subconfiguration files • 30

user access keywords • 97

X
X protocol forwarding

overview • 91

settings • 92

	Installation
	Replace an Existing Secure Shell Program
	Install on Linux
	Install to a Non-Default Location on Linux
	Install on Sun Solaris
	Install to a Non-Default Location on Sun Solaris
	Install on HP-UX
	Install on IBM AIX
	Migrate Settings from Existing Configuration Files
	Install Reflection PKI Services Manager

	Getting Started
	Start and Stop the Server
	Make an SSH Connection
	Transfer Files Using sftp
	Transfer Files Using scp
	Understanding Secure Shell

	Configuration Files
	Client Configuration Files
	Configuration File Format
	Host Stanzas
	Command Line Options
	Server Configuration Files
	Server Subconfiguration Files
	Subconfiguration File Samples

	Data Protection
	Encryption
	Data Integrity
	Configuring Ciphers and MACs
	FIPS Mode

	Server Authentication
	Public Key Authentication Overview
	Create a New Host Key
	Add a Key to the Client Known Hosts List
	Display the Fingerprint of the Host Public Key
	Server Certificate Authentication Overview
	Obtain Authentication Certificates
	Configure Server Certificate Authentication
	Kerberos (GSSAPI) Authentication
	Kerberos System Requirements
	Configure Kerberos Server and Client Authentication

	User Authentication
	Password and Keyboard Interactive Authentication
	Configure Password Authentication
	Configure Keyboard Interactive Authentication

	Public Key Authentication
	Configure Public Key User Authentication
	Use the Key Agent

	Certificate Authentication for Users
	Configure Certificate Authentication for Users

	Pluggable Authentication Modules (PAM)
	Configure PAM Authentication

	RADIUS Authentication
	Configure RADIUS Authentication

	RSA SecurID Authentication
	Configure SecurID Authentication

	Configure Account Management on HP-UX Trusted Systems

	Secure File Transfer
	Secure File Transfer (sftp)
	Use sftp Interactively
	Run sftp Batch Files
	Configuring the sftp Transfer Method (ASCII or Binary)
	Secure File Copy (scp)
	Smart Copy and Checkpoint Resume
	Configure Upload and Download Access
	Set File Permissions on Downloaded Files
	Set File Permissions on Uploaded Files

	Port Forwarding
	Local Port Forwarding
	Remote Port Forwarding
	Configure Port Forwarding
	FTP Forwarding
	X Protocol Forwarding
	Port Forwarding Settings

	Controlling Access and Authorization
	Access Control Settings
	Using Allow and Deny Keywords
	Configuring User Access
	Configuring Group Access
	Configuring Client Host Access

	Debug Logging and Auditing
	Client Debugging
	Server Debugging
	Auditing (Message Logging)
	Solaris Audit Support

	Troubleshooting
	Troubleshooting Public Key Authentication
	Troubleshooting Slow File Transfer Speed

	Appendix
	Files Used by the Client
	Files Used by the Server
	Client Configuration Keywords
	Server Configuration Keywords
	File and Directory Permissions
	ssh Command Line Options
	ssh Escape Sequences
	ssh Exit Values
	ssh-keygen Command Line Options
	scp Command Line Options
	sftp Command Line Options
	Supported sftp Commands
	ssh-add Command Line Options
	ssh-agent Command Line Options
	sshd Command Line Options
	ssh-certview Command Reference
	ssh-certtool Command Reference
	winpki and pkid Command Reference
	pkid_config Configuration File Reference
	pki_mapfile Map File Reference
	Sample Mapping Rules
	Sample Map File with RuleType Stanzas
	PKI Settings Migration
	PKI Services Manager Return Codes

	Glossary of Terms
	authentication
	bandwidth
	cipher
	data integrity
	digital signature
	encryption
	GSSAPI (Generic Security Services Application Program Interface)
	hash
	Kerberos
	latency
	MAC (Message Authentication Code)
	passphrase
	PKCS
	port forwarding
	public key/private key
	regular expression
	Secure Shell
	socket
	trust anchor

	Index

