
REST API Guidebook
This guidebook provides an independent exercise that supports the Introduction to Representational State
Transfer (REST) with Java, Beginner Part 3 course.

Table of Contents
Using the VMware Environment

Accessing the Environment ... 2
Setting Up Your Project Files ... 3

Importing an Existing Project .. 4
The Eclipse Interface

Top Bar .. 6
Project Explorer Pane .. 7

Setting Up For Testing
How to Test Your Exercises...11
Course 3: REST Exercise, 2

Exercise: Debugging a REST API Using Fiddler ..13
Accessing Additional Resources .. 25

1

2

Using the VMware Environment
VMware is a tool offered by VA ITWD that allows you to log in to a virtual machine loaded with all of the
tools needed to create a REST API. You can follow the step-by-step directions listed in this guidebook
to recreate the demonstrations shown during the course presentation to help you practice in a hands-on
environment.

Accessing the VMware Environment
Upon registration for the Introduction to Representational State Transfer (REST) with Java, Beginner Part 3
course, TMS ID 3878052, you will receive an email message with the link to the VMware virtual machine.
Depending upon your user profile, you may see icons for other tools that you have access to use in this
virtual environment.

Eclipse icon

3

Setting Up Your Files in the Environment
After opening Eclipse, you need to set up a workspace to make sure your work is in a saved folder
designated for you.

1. Select File Tab
The File tab opens to display its
menu.

2. Select Switch Workspace
Selecting Switch Workspace opens
a sub-menu.

3. Select Other
Selecting Other opens the
Workspace Launcher dialog box.

4. Browse to the Workspace
In the Workspace field of the
Workspace Launcher, select
Browse and navigate to the folder
where you want to save your work.
Select or create a folder associated
with your account, such as a
folder on your Desktop or in My
Documents.
Select OK to finish.
Your REST API project will now
be saved in the workspace you
designated. Your VM workspace
will remain active for the two weeks
following the course.

4

Importing an Existing Project
When you want to import an existing REST project into Eclipse, open Eclipse to start the import.

1. Right-Click on the Project
Explorer Pane
A dialog box will open with several
different options; navigate down to the
Import option and select it.

2. Select Import
Once you’ve selected Import,
you’ll need to navigate down to the
bottom of the sub-menu and select
the Import option again. Selecting
Import will open the Import dialog
box shown below in step three.

3. Select an Import Source
From the Import dialog box, select General and Existing
Projects into Workspace. Select Next to continue.

4. Select the Project to Import
On the Import Project dialog box, select the Browse button.

5

5. Locate on Your Computer
Where the Project is Stored
Navigate to and select the zip file
that contains the project, then select
Open.

This will show you your projects in the zip file.

6. View the Imported Project in
Project Explorer
Go to Project Explorer to locate
the existing project that was just
imported into your Eclipse. From
there, you can add or edit the REST
API project as you wish.

6

The Eclipse Interface
To help you become familiar with Eclipse’s interface, we’ve highlighted some of its tools and features and
provided the purpose and function of each.

1. Top bar
The buttons on this bar help run and edit your applications. The buttons we’re going to highlight are the
ones that will help you debug and run your assignments.

a. Debug Button
This button runs your app in debug mode by attaching the debugger. It enables you to discover and
diagnose coding and other mistakes that may occur in your application. This is especially useful for
determining run-time errors or errors that can only be detected once the application has launched
One of the many useful features of the debugger is the ability to step through your code and examine
the contents of variables.

b. Run Button
This button runs your API without attaching the debugger. When developing your APIs, it is a best
practice to avoid using this button because it does not show you where errors are, only that you have
them. Once your system is in production, it should always be compiled without debug options enabled.

7

c. Open Perspective Button
This button provides different views to assist you in completing specific steps while creating REST
APIs. This button switches between different perspectives. The perspectives that will be most helpful in
your assignments will be the Debug and Java.

d. Java EE Perspective Button
This button is another perspective button and it opens the Java EE perspective. It’s used for Java
projects and will be helpful if you get lost and need a shortcut to get back to your projects.

2. Project Explorer Pane
The purpose of this pane is to organize the files of the project you’re working on. Files in this pane are
displayed in a hierarchical view to help show how project files are arranged. The project files we’re going to
highlight will help you understand how a REST API project written in Java is organized in Eclipse.

a. Top Folder
The folder on the top level of a project holds all your files for a
specific project. The tiny “M” and the “J” on the folder icon have
a specific meaning to your project. The “M” stands for Apache
Maven, which is a build automation tool. (Maven is outside of the
scope of these assignments.) The “J” stands for Java, which tells
you and Eclipse that this project is written for the Java platform.

b. Deployment Descriptor
As the project hierarchy is expanded, the next file you’ll notice is the Deployment Descriptor. This file
identifies the project as a RESTful web application.

c. Java Resources
The next folder in the same level of hierarchy as the Deployment Descriptor is the Java Resources
folder. This folder holds content such as Java code and the file where you will edit your assignments.

8

src/main/java folder
As we expand down the Java Resources hierarchy one level, you’ll see the src/main/java folder.
This folder holds the file, Server.java, to edit your assignments. To locate this file, expand down
the Java Resources.

d. src and target folders
The src and target folders are in the same level of hierarchy as the Java Resources folder and
shouldn’t be edited or removed. The files in these folders were created to point to specific files
necessary for running your program.

Setting Up For Testing
Before you can test your server project, you will need to define the server runtime executables that Eclipse
will need to load. In our case, we are using Apache Tomcat version 7.

1. Click on Window in the top menu and go to Preferences.

9

2. Expand the Server tab on the left,
and select Runtime Environment.

3. Expand the Apache folder and
select Apache Tomcat 7.0. Click Next.

4. Click Browse to select the Apache
Tomcat 7.0 folder.

10

5. Select the c:\apache-tomcat-7.0.55 folder and click OK.

6. Click Finish.

7. You will see that the
Apache Tomcat 7.0 runtime
environment has been linked to
Eclipse.

That’s it—now Eclipse knows how
to run your web server applications.

11

How to Test Your Exercises
Once you have completed the exercises in the next section of this guidebook, and you have resolved all the
errors, you are ready to test. To test your exercises, you will need to select the context (click on the project
folder), and then debug your project. For the clients (and other projects that do not need to run in a server
container), debug as Java Application. For server applications, you will need to launch the debugger from
the Project Explorer pane. The steps below show you how to test your exercises.

1. Right-Click on the Top Folder of
the project you’re working on
When you right-click on the top folder a
sub-menu will open. Navigate down to
Debug As and select Java Application
for non-server code. For server code,
select the first option, 1. Debug on
Server. This starts the application
running on the server. Selecting 1.
Debug on Server will open the dialog
box shown below.

2. Debug On Server
Selecting 1. Debug on Server will open the dialog box
shown on the left. Expand the Apache folder and select
Tomcat v7.0 Server at localhost and then select Finish.
This will run the REST API that you’re working on.

12

3. Debug As Java Application
Right-click on the top folder of the project you’re working on to open a sub-menu. Navigate down to Debug
As and select the third option, 3. Java Application. This runs the client, and output will be displayed in the
Console area.

4. View Results in the
Console area
Once the results have been output, you
will be able to view them in the console
areas of Eclipse.

13

Course 3: REST Exercise
Exercise: Debugging a REST API Using Fiddler
In this third exercise, we’re going to ask you to go through some basic debugging steps and Eclipse’s
debugging capabilities. We’re also going to introduce you to Fiddler, a web-debugging proxy. Before you
use Fiddler for your exercise, you need to open Eclipse and start the Course 2 exercise application on the
Tomcat server. In your previous exercises, a custom client was written to test the REST APIs.
In this exercise, we’re going to use Fiddler, an HTTP client to communicate with our API. Please refer to the
Introduction to REST with Java, Beginner Part 2 Guidebook to set up your project files and run the Course
2 Server Application.

14

1. Run the Course 2 Server Application
Once imported, run the Course 2 Server Application by right-clicking on the top project folder, go to Debug
As, and then 1. Debug on Server. Follow the prompts discussed in previous exercises, including setting up
the Tomcat 7.x runtime, if necessary.

Once the application has loaded,
Eclipse will launch its own web
browser for the application.
Please make a note of the URL
of the application; – we will need
that information for Fiddler. We’ll
be entering this URL into Fiddler to
start our connection to the REST
API. Also, keep Eclipse running,
since that is where the application is
hosted and where we’ll be doing our
debugging.

15

2. Start Fiddler
You can launch Fiddler from the desktop by clicking the shortcut, which is a green rhombus with
an F in the middle.

Fiddler will default to the last tab used. If not selected, click on the Composer tab to select it. The
Composer tab is where you create an HTTP message and where you’ll be doing a majority of the exercise
for this course.

Copy the server URL we previously
noted when running the Course
2 Server Application. It should be
something like http://localhost:8080/
Course-2-Server. Paste the URL in
the Parsed tab in Fiddler, and click
Execute. This will execute the default
Fiddler action, which is GET, and
will return the base index.htm file
associated with the server.

Copy%20the%20server%20URL%20we%20previously%20noted%20when%20running%20the%20Course-2%20server%20application.%20It%20should%20be%20something%20like%20http://localhost:8080/Course-2-Server.%20Paste%20the%20URL%20in%20the%20parsed%20tab%20in%20Fiddler%2C%20and%20click%20execute.%20This%20will%20execute%20the%20default%20Fiddler%20action%2C%20with%20is%20GET%2C%20which%20will%20return%20the%20base%20index.htm%20file%20associated%20with%20the%20server.%20
Copy%20the%20server%20URL%20we%20previously%20noted%20when%20running%20the%20Course-2%20server%20application.%20It%20should%20be%20something%20like%20http://localhost:8080/Course-2-Server.%20Paste%20the%20URL%20in%20the%20parsed%20tab%20in%20Fiddler%2C%20and%20click%20execute.%20This%20will%20execute%20the%20default%20Fiddler%20action%2C%20with%20is%20GET%2C%20which%20will%20return%20the%20base%20index.htm%20file%20associated%20with%20the%20server.%20

16

Fiddler is an HTTP client and acts just as any web browser might; however, it gives us the ability to control
what is sent and inspect what is received. Once the GET is executed, a result will pop up on the left.
Double-click that result line (notice how it shows status 200, which we know means OK/Success). Fiddler
will show you the text of the response in the Text View tab, which is selected by default. You can click the
other tabs to see different renderings of the response, such as Web View, which should be almost what
you would see in a regular web browser. We are now ready to remote control our API!

17

3. Update the Standardized Action, URL, and Protocol Version
We don’t have anything in our database yet, so it would be a good idea to PUT something in it for testing.
Specifically, a value named “test.” Select PUT from the drop-down Standardized Actions window. You’ll
notice that there are several actions, but we’re only going to focus on the actions GET and PUT.
Recall from our deployment descriptor (web.xml) that our API URL pattern is /api/*. Also, recall from the
previous exercises that the path (defined by the @Path tag) to the standard actions starts with /values/. So
the full URL you will need to use to prefix all of the standardized actions is your base url/api/values/. For the
application run from Eclipse using Tomcat, the url should be:
“http://localhost:8080/Course-2-Server/api/values/”
From here, you can add on the additional information to specify the standardized actions. In the URL box,
add “/test” at the end of the URL and “/Hello%20World.”

Note: All URLs must be escaped. Escaping a URL is taking characters that are invalid for HTTP resources
and converting them into an encoded format that is a valid URL. The “%20” in the URL represents a space.
To the right of the URL box, you’ll see the Protocol Version drop-down box. Make sure that HTTP/1.1 is
selected.
Select Execute.

http://localhost:8080/Course-2-Server/api/values/

18

4. Select the JSON Tab
Double-click the response at left and then go to the JSON tab. Notice how the JSON string you coded is
interpreted as a key/value pair. You can select the other tabs to see different renderings of the response.
Feel free to experiment with the other view tabs.

19

5. Open the Statistics Tab
Now that you have executed a PUT standardized action, select the Statistics tab and open it. Useful
performance metrics are shown. On the left, you’ll see the Request Log. This log shows every HTTP
request going in and out of Fiddler. It will also show a status code of your request. You should receive a
HTTP response code of 200, which means that the PUT request was successful.

20

6. Add a Breakpoint into the REST API in Eclipse
In order to debug the REST API, you’ll need to go back in to Eclipse. It is often useful to add pauses in the
code, called breakpoints, while debugging. A breakpoint is a break in the execution of the application.
It is a way to help developers isolate an issue. It stops the application execution when that specific line of
code is about to be executed and you can see the state of your application, such as variable values, object
references, etc. To add a breakpoint, click on the section of the code where you want to add one. Hit
Control-Shift-B on your keyboard, or right-click on the line number, and select Toggle Breakpoint. Your
screen should look similar to the screen shown. The blue dot indicates that a breakpoint was added. As
long as you are running in debug mode, you can add and remove breakpoints without stopping and starting
the server. In some circumstances, to catch a line of code that might only run in your application at startup,
you would need to stop the server, add your breakpoint, and then restart the server. In our exercises, this
will not be necessary.

Tip: You can control displaying line
numbers and folding by right-clicking
in the white space to the left of your
code and accessing the Context
menu. Here you can turn on line
numbers and “fold” (or hide) blocks of
code. Folding is an extremely useful
feature when you are working with
large amounts of code.

21

a. Debugging Practice
Feel free to add a breakpoint
wherever you’d like. One example,
is to add a breakpoint to the GET
method in Server.java where the
key/value is checked to see if it exists
in the datamap. Once you have your
breakpoint in, issue the appropriate
action in Fiddler to cause the server to
execute the code. In this case, send
a GET request to the URL: http://
localhost:8080/Course-2-Server/api/
values/test/, which should return the
value we input for test (Hello World),
earlier.

Once your breakpoint is reached,
execution will stop on the server
and Eclipse will ask you if you want
to switch to the Debug Perspective.
This is a set of screens optimized for
walking through and debugging code.
All of the tools are available from any
of the other perspectives, but this
perspective is optimized for debugging.
Select Yes to continue.

http://localhost:8080/Course-2-Server/api/values/test/
http://localhost:8080/Course-2-Server/api/values/test/
http://localhost:8080/Course-2-Server/api/values/test/

22

This is what the default debug perspective looks like. Notice how the Server.java line 103 breakpoint is
highlighted. Click on the line in the top left button to view the associated variables and values for the block.

b. Stepping Through Your Code
Depending on the level of debugging you need to do, you can step over, step into, and step out of
breakpoints from the debug control menu on the tool bar.
Let’s use step over so we don’t accidentally start stepping through JRE classes. The step over icon is
the second yellow arrow, which looks like an upside down U. You can also use F6 on the keyboard
Alternatively, you can stop your program (red square) or resume execution (green arrow).
Click the step over icon or use keyboard F6 to step through the code.

23

Tip: You can click and hover over objects and variables to see their values. Notice how the datamap
contains our test value of Hello World.

Tip: You can also keep an eye out on the console to see if any messages pop up. If you recall, we had a
print headers method in our Server code to print out the headers. Here you can see the headers printed out
in the console area.

24

7. Select the Java Perspective
Once you are done with debugging, you can go back to the standard Java EE perspective. To do this, click
on Window in the menu at the top, go to Open Perspective, and select Other. The perspective that we’ve
been using is the Java EE perspective, which is optimized for enterprise application development, such as
working with RESTful web services. Select Java EE and click OK to return to the default view.

Tip: You can customize perspectives and experiment
with different ones. If you want to return to the default
view, you can always restore the perspective to the
original settings from the Windows menu by selecting
Restore Perspective.
Now you have the basic knowledge necessary to debug
RESTful applications. Feel free to experiment with
Eclipse, Tomcat, and Fiddler doing different combinations
and scenarios. Try sending a GET for a value that
doesn’t exist, or a PUT for a key that exists, or a DELETE
on a key that doesn’t exist to help you get a better
understanding of how these tools can be used to
debug applications.

25

Additional Resources
This section of the guidebook provides you with resources mentioned in the REST course. Several are
websites and the others can be found in the Books 24x7 catalog of the Talent Management System (TMS).

Websites
The One-VA Technical Reference Manual (VA TRM)
http://trm.oit.va.gov/TRMHomePage.asp Note: This link is only available on VA’s Intranet.
Search this site to stay within guidelines for REST vendors and guidelines that have been vetted and
approved by VA. This site is also available to search hardware, software, testing tools, applications, etc., to
see if that tool is approved, approved with constraints, or unapproved at VA. Do your research here before
you start using tools to develop REST APIs.
Eclipse
To download Eclipse to your personal computer visit, https://www.eclipse.org/
Eclipse Reference Websites
Visit these user forums for references on how to use REST with Eclipse:
http://marketplace.eclipse.org/content/rest-client
http://wiki.eclipse.org/EclipseLink/Examples/REST/GettingStarted/RestService
Tomcat 7.0
To download Tomcat 7.0 to your personal computer, visit, http://www.coreservlets.com/Apache-Tomcat-
Tutorial/tomcat7-files/tomcat-7.0.34-preconfigured.zip.

1. Unzip the the downloaded file into the root folder of the C drive (C:\apache-tomcat-7.0.34).
2. In Eclipse, go to Open Window, down to Preferences, and select Server and then Installed

Runtimes to create a Tomcat installed runtime.
3. Click Add to open the New Server Runtime dialog.
4. Select your runtime under Apache (v7.0).
5. Click Next.
6. Under Tomcat Installation Directory, insert the path to your Tomcat installation

(For example: C:\apache-tomcat-7.0.34).
7. Click Finish.

Books 24x7
There are several electronic books about developing REST APIs available to you in Books 24x7 on the
TMS (TMS ID 30086). The list of books includes:
• Cloud	Optimized	REST	API	Automation	Framework
• The	Agile	Architecture	Revolution:	How	Cloud	Computing,	REST-Based	SOA,	and	Mobile	Computing

Are	Changing	Enterprise	IT
• RESTful	PHP	Web	Services:	Learn	the	Basic	Architectural	Concepts	and	Steps	Through	Examples

of	Consuming	and	Creating	RESTful	Web	Services	in	PHP	Android	Application	Development
for	Dummies

http://trm.oit.va.gov/TRMHomePage.asp
https://www.eclipse.org/
http://marketplace.eclipse.org/content/rest-client
http://wiki.eclipse.org/EclipseLink/Examples/REST/GettingStarted/RestService

26

Five Steps for Accessing Books 24x7
1. Log in to the TMS at https://www.tms.va.gov.

2. Enter TMS ID 30086 in the Browse text box and select Go.

3. Select the Books 24x7 Referenceware title from the Catalog Search Results.

4. Select Continue Course (If this is the first time you have accessed Books 24x7, the button will read
Start Course).

5. Enter your search terms (e.g., “REST, API”) in the Search text box and select the Go button.

https://www.tms.va.gov

	Structure Bookmarks
	REST API Guidebook
	Course 3: REST Exercise
	Exercise: Debugging a REST API Using Fiddler
	1. Run the Course 2 Server Application
	2. Start Fiddler
	3. Update the Standardized Action, URL, and Protocol Version
	4. Select the JSON Tab
	5. Open the Statistics Tab
	6. Add a Breakpoint into the REST API in Eclipse
	a. Debugging Practice
	 b. Stepping Through Your Code
	7. Select the Java Perspective
	Additional Resources
	Websites
	Books 24x7
	Using the VMware Environment
	Accessing the VMware Environment
	Setting Up Your Files in the Environment
	1. Select File Tab
	2. Select Switch Workspace
	3. Select Other
	4. Browse to the Workspace
	Importing an Existing Project
	1. Right-Click on the Project Explorer Pane
	2. Select Import
	3. Select an Import Source
	4. Select the Project to Import
	5. Locate on Your Computer Where the Project is Stored
	6. View the Imported Project in Project Explorer
	The Eclipse Interface
	1. Top bar
	 a. Debug Button
	 b. Run Button
	 c. Open Perspective Button
	 d. Java EE Perspective Button
	2. Project Explorer Pane
	a. Top Folder
	 b. Deployment Descriptor
	 c. Java Resources
	How to Test Your Exercises
	1. Right-Click on the Top Folder of the project you’re working on
	2. Debug On Server
	3. Debug As Java Application
	4. View Results in theConsole area
	 src/main/java folder
	d. src and target folders
	Setting Up For Testing

