Coding
Best
Practices Reference

The Best Coding Practices Reference contains recommendations that will contribute toward development of software with highly desirable attributes -- these include: maintainability, simplicity, consistency, modularity, generality, self-descriptiveness, and error-tolerance. These practical guidelines were suggested by senior-level developers, and reviewed for acceptance by Software Production staff and management. Where appropriate, one or more deficiency categories have been associated with a best coding practice.

This reference document illustrates various code construction practices that support universally-accepted software quality g
oals. In other words, how M
 code should be written to enhance reliability, maintainability, modifiability, reusability, readability, etc. This document will not contain those items or practices specifically addressed in the SACC standards or any other official guideline for code production.

In addition, a critical aspect of Best Coding Practices is working from specifications or designs defining the intent and purpose of the code.

Structure

Use of GOTO should be avoided wherever possible. GOTO should be primarily used to provide a common exit point for the routine. If GOTO must be used, it should be annotated with a comment either on o
r before the same line of code.

Promotes readability and maintainability; increases structural integrity.

[Deficiency Category - CC1]

Strictly avoid the creation of ‘drop-down’ code where successive portions of functionality are executed in a rather lengthy routine. Instead, modularize the coding of these functional pieces so that self-contained subroutines are written; use a driver placed at the top of the routine in order to call subroutines in the proper sequence.

Increases readability, modularity; also eases debugging and maintenance efforts. During development, it facilitates unit testing.

[Deficiency Category - CC1]

Limit block structuring to three levels of nesting (i.e., no more than 3 dots at the beginning of the line) with no more than about 10 lines per level. More layers/lines tend toward unacceptable levels of complexity, and should alert the developer to the need for extrinsic functions or procedures. A valid exception to this would be looping through multiple global subscript levels; here the dot-level would correspond to the subscript level being incremented in the loop.

Increases simplicity and may contribute more reusable code.

Keep the line short; preferably not more than the standard screen width of 80 characters.

Promotes readability and maintainability.

Line tags, especially for a subroutine first line, should be meaningful.

Increases readability and self-descriptiveness.

Background jobs should contain an entry point which allows the job to run in the foreground.

Increases maintainability and testability.

To the extent possible, group related functionality together within a routine or routine set.

Increases modularity and readability; may decrease number of calls to other routines; simplifies finding relevant lines of code on the basis of functionality.

Set up functions and procedures wherever possible to simplify and modularize the code; limit the functionality contained in each subroutine. For example, complex lookups and data extraction could be performed within self-contained, callable code segments. This makes the logic in the main routine easier to follow by avoiding the distraction of those complexities.

Increases error tolerance, simplicity, readability, testability and modularity; may contribute more reusable code.

Variables

NEW variables at the beginning of each subroutine. This helps with clean-up and makes the subroutine more self-contained; prevents changing values of variables by the same names that are already defined within the partition. Needed data should either be passed-in or established by the subroutine after the NEW command.

Increases modularity and reusability.

[Deficiency Category - CC3,CS4]

If a data element is used only once, don’t set it in a local variable unless the expression needed to resolve the data becomes unduly complex.

Increases simplicity.

�

Make variable names meaningful. Furthermore, make variable names consistent within the module (and across modules, if possible); i.e., if the 3rd piece of a particular data node is set into a variable, always use that variable name whenever that data piece is accessed. Be sure to internally document these variables (probably in the driver routine).

Increases readability, maintainability and consistency.

[Deficiency Category - CS4, CS5.1]

Internal Documentation

Each subroutine (i.e., function or procedure) should have at least one comment line which concisely describes its function.

Promotes self-descriptiveness and maintainability.

[Deficiency Category - CS5.1]

In creation of extrinsic functions and procedures, all the input and output variables should appear in the formal parameter list; additionally, these variables should be internally documented. The exception to this would be the use of module-wide variables; internal documentation should then indicate those variables are assumed to exist. Also, where extrinsic functions are concerned, the variable serving as the argument of QUIT need not appear in the formal parameter list.

Promotes self-descriptiveness and maintainability; increases consistency.

[Deficiency Category - CS4, CS5.1]

Error Tolerance

Avoid undefined and null subscript errors by using $GET and '+' functionality in global references.

[Deficiency Category - CC3, CS4]

Example: S X=$G(^DPT(+$P(DATA,U,10),0))

Always check for corruption in the cross-reference by checking for actual existence of the data node to which the cross-reference refers.

Use IF...ELSE only with block structure to avoid inadvertent reset of $T. (Value of $T is stacked by level. So if $T's value changes within a block this won't affect a subsequent ELSE statement outside the block.)

[Deficiency Category - CC1]

Example: IF X DO instead of IF X DO SUB

	 . (etc.) ELSE (etc.)

	 ELSE DO

	 . (etc.)

Whenever updating files, use the LOCK command consistently.

General

Avoid inverse cross-references; use reverse $ORDER whenever possible.

Increases simplicity.

[Deficiency Category - CC3]

Consider using commas in logical constructs so that the 2nd expression need not be evaluated.

Increases efficiency.

 Example: IF X,Y instead of IF X&Y

Use the argumentless FOR command, if it isn’t necessary to maintain a loop counter.

Increases readability and simplicity.

Avoid complex expressions within the argument of $SELECT.

 Increases simplicity, readability and maintainability.

 [Deficiency Category - CC1]

Software Service	� PAGE �
2
�	
Coding
 Best
 Practices

Management Information Products Group		� DATE �
1/9/97
�

