
 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

Slide 1 

 

 
 

PRESENTER 1 SAY: 
On behalf of IT Workforce Development, welcome to today’s session of Introduction to 
Representational State Transfer (REST) with Java, Beginner Part 2. This is the second course 
in a three-part series on REST.  
 
In the first course, you learned about REST and RESTful web services. In today’s course, we’ll 
talk about standardized actions, outputs, and design guidelines. We’ll also show you 
standardized actions and outputs and assign you a take-home exercise, so you can tap into 
what you’ve learned.  
 
 
 

Page 1 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 2 

 
 

PRESENTER 1 SAY: 
We’d like to take a moment to introduce ourselves. I’m PRESENTER 1.  
  
PRESENTER 2 SAY: 
And I’m PRESENTER 2.  
  
We’re looking forward to providing you with information on today’s topic. But before we get 
started, let’s talk about a few Lync items. 
  
 
 
 

Page 2 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 3 

 
 

PRESENTER 1 SAY: 
We want this to be an engaging session, so we’ll be asking you questions throughout this 
session, so please use the Chat window to respond. You can also use the Chat window if you 
have questions for us. We’ll answer your questions either during the session or during the Q&A 
at the end of the session. 
  
We want to make sure you get credit for attending today’s session. We’ll provide you with 
instructions on how to complete the self-certification at the end, so be sure to stick around. If 
you’re attending as a group, please email the VA ITWD mailbox and let us know. We’ll be able 
to ensure you all receive completion credit. 
 
PRESENTER 2 SAY: 
To access today’s handouts, select the paperclip icon in the Lync toolbar above the list of 
participants. Then, select the right arrow next to the file in the Attachments pop-up menu. From 
there you can select Open, or Save As. If you choose Save As, you can select where you want 
to save the download. Note that the Attachments link is not accessible via screen readers. 
Instead, you can use the CTRL+F keyboard command to access the downloads. Please reach 
out to us in the Chat or at vaitwd@va.gov for assistance with accessibility and we’ll be happy 
to help. 
 
 
 
 
 

Page 3 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 4 

 
 

PRESENTER 2 SAY: 
In today’s course, we’re going to talk about standardized actions in REST. Standardized 
actions are important to understand because they’re essentially the requests, or calls, you 
make to retrieve the information you need. We’ll show you how standardized actions work. 
Then we’ll talk about how REST outputs data and some real-world examples of REST outputs. 
Finally, we’ll discuss REST design considerations and answer any questions you have.  
 
As you start using REST, it’ll be crucial to use design considerations to prevent issues and 
avoid frustration that could arise. We’ll be providing you the opportunity for further practice 
through homework exercises that you will complete independently in your own VMware 
account that we have set up for you. For your assignment, you’ll be able to apply what you 
learned by developing a JSON application programming interface, or API using standardized 
actions. We’ll share more information about the VMware exercise later in the course.  
 
As we go through our topics, please reflect on how you can incorporate them into a web 
application you’re building. We’ve got a lot to cover, so let’s get started! 
  
 
 
 

Page 4 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 5 

 
 

PRESENTER 1 SAY: 
Let’s spend some time reviewing resources because they’re crucial to understand when it 
comes to REST standardized actions.  
 
We mentioned in the first course that resources are named objects, and standardized actions 
request instructions that are completed by the resources. Resources are information identified 
by a string of characters. These character strings are called uniform resource identifiers, or 
URIs. URIs can be classified as a universal resource locator, URL, or as a uniform resource 
name, URN. Often, resources are referred to as nouns because they’re named objects. 
Standardized actions are frequently referred to as verbs because they request actions for 
resources. 
  
 
 
 

Page 5 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 6 

 
 

PRESENTER 1 SAY: 
Remember, the computer sending the request has to ask for a specific action to get an exact 
result. Becoming familiar with how requests and standardized actions work will help you decide 
what type of request should be sent to the web server to get a specific result. Now we’re going 
to talk about HTTP web conversations as they’re organized around REST standardized actions 
and resources. 
 
 
 
 

Page 6 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 7 

 
 

PRESENTER 2 SAY: 
Hypertext Transfer Protocol, or HTTP, is an application protocol to transfer data between a 
client and the server. These conversations tell the web server what the requester wants to see 
and what action should be applied to the resources. HTTP web conversations allow web 
browsers to exchange inquiries and receive answers. The conversation starts with a request 
that is sent from a web browser to the server. Once the request is received and processed, it 
responds back to the web browser with an answer. The initial request to the server is what is 
known as a standardized action.  
 
The most common standardized actions are GET, POST, PUT, and DELETE. The only way you 
can communicate in an HTTP web conversation is with a standardized action. There is no 
other way to make requests! Each standardized action answers a request differently. The code 
shown on the screen is how standardized actions would look in an HTTP web conversation 
when ordering a product over the internet. Let’s discuss them in more detail. 
 
 
 
 

Page 7 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 8 

 
 

PRESENTER 1 SAY: 
GET is the most common standardized action. This action tells the server, “GET a 
representation of what I’m requesting.” The server will retrieve a single resource, such as an 
HTML document. In REST APIs, a resource won’t automatically trigger other GETs, so it’s up to 
the server to determine that. If the programmer wants to retrieve other files such as images, 
CSS files, or Java Script files, another GET command will need to be performed. It’s important 
to note that these actions are passed through a URL, which isn’t secure. As a result, this action 
shouldn’t be used to retrieve sensitive information like a username and password. GET actions 
are a read-only operation, meaning once the information is retrieved, it can’t be altered. This 
command is useful because it retrieves a representation of data that is being requested by the 
user.  
 
 
 
 

Page 8 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 9 

 
 

PRESENTER 2 SAY: 
POST is used to submit information to the server. It’s typically used to update existing 
information and can also be used to create new content. A POST action often means, “here is 
the information to create a new user, post it for me.” For example, a POST request could be 
used to add a new article to a site. You would use POST to add a link of the resource to the 
web page. Once the article is posted, the server decides where the URL is located. The 
advantage of this request is that you can post information without knowing the location of the 
resource.  
 
 
 
 

Page 9 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 10 

 
 

PRESENTER 1 SAY: 
PUT is used to create or update a resource. This action tells the server, “PUT the data at the 
URL we identified.” A PUT action tells the data at a specific URL to either overwrite or create 
new data. This is very similar to a POST action. Since both requests update information, you 
may be wondering how they differ. They differ in that a PUT action replaces the resource while 
a POST action only updates the resource. For instance, you would use a PUT action to replace 
an image on a website and a POST action to add additional information to existing content. 
 
A PUT request could be used to update resources from different web pages. The programmer 
would type “HTTP PUT” to update a resource and put a new representation of the resource on 
a web page.  
 
 
 
 

Page 10 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 11 

 
 

PRESENTER 2 SAY: 
The last standardized action is DELETE. And, as you can probably guess, delete means 
delete! This action tells the server to “DELETE data from an existing resource.” An example 
would be deleting an old image that isn’t needed. These requests are important as they’re the 
only way to remove unnecessary information from specific locations.  
 
 
 
 

Page 11 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 12 

 
 

PRESENTER 1 SAY: 
Now that we’ve discussed the four REST standardized actions, let’s test your knowledge with a 
game of All Clued Up!  
 
We’ll need your participation, so pay close attention. Clues to a standardized action will be 
displayed on the screen, and you’ll have the chance to name the standardized action we’re 
describing. Once you’ve decided on an answer, type it in the Chat window located on the left 
side of your screen. 
 
Here’s the first description. 
 
 
 
 

Page 12 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 13 

 
 

PRESENTER 1 SAY: 
What standardized action on the screen matches the clues below? Your clues are: 
• Requests a representation of a resource 
• Retrieves a single resource 
• Responds with a read-only operation. 
 
PRESENTER 2 SAY: 
Take your time and think about the standardized actions we just discussed and type your 
answer in the Chat window. The possible choices are GET, POST, PUT, and DELETE. 
 
If you guessed the GET action, you’re correct! 
 
Let’s move on to our next set of clues. 
 
 
 
 

Page 13 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 14 

 
 

PRESENTER 1 SAY: 
What standardized action on the screen matches the clues below? Your clues are: 
• Updates existing information 
• Creates new content 
• Adds information without knowing location of the resource. 
 
PRESENTER 2 SAY: 
When you’re ready to respond, type your answer in the Chat window. 
 
If you guessed the POST action, you’re correct! 
 
 
 
 
 

Page 14 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 15 

 
 

PRESENTER 1 SAY: 
Now that we’ve talked about standardized actions, we’re going to show you how they work by 
simulating them in a conversation. In our example, we’ve created an API to access a key value 
data structure. Our API uses the four standardized actions: GET, PUT, POST, and DELETE. 
Each of the server responses are a “200,” which means they are successful. We’ll get more 
into HTTP response codes in course three. This is an example of a successful HTTP Web 
conversation. Let’s walk through the conversation line by line. 
 
First, the client is asking the server to PUT the “name” “Joe” in its system. The server responds 
with a “200,” which interprets as “OK,” a response for successful HTTP requests. 
 
Second, the client is asking the server to GET the “name” that was put in its system. Again, the 
server responds with a “200 Joe,” which interprets as “Ok, I’ve got the name Joe and the 
response was successful.” 
 
Third, the client is asking the server to POST the “name” “Sarah” in its system. The server 
responds with a “200,” which interprets as “Ok, this has been successful.” The name Joe was 
updated to Sarah. 
 
Fourth, the client is asking the server to GET the “name” “Sarah” that was put in its system. 
The server responds with a “200 Sarah,” which interprets as “Ok, I’ve got the name Sarah and 
the response was successful.”   
 
Fifth, the client is asking the server to DELETE “name” that was put in its system. The server 
responds with a “200,” which interprets as “Ok, this has been successful.” 
 

Page 15 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

Now that we’ve seen a successful HTTP conversation, let’s move on to see a conversation 
with errors. 
 
 

Page 16 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 16 

 
 

PRESENTER 2 SAY: 
In our conversation, we’re going to use the same standardized actions, but this time our 
response will return errors. 
 
First, the client is asking the server to PUT the “name” “Joe” in its system. The server responds 
with a “200,” which interprets as “Ok,” a response for successful HTTP requests. 
 
Second, the client is asking the server to GET the “firstname” in its system. The server 
responds with a “404,” which interprets as “Resource not found.” The server responded this 
way because we called our key “name” instead of “firstname.” 
 
Third, the client is asking the server to POST the “lastname” “Doe” in its system. The server 
responds with a “409,” which interprets as a conflict, there wasn’t an existing key to update. 
Since the server recognizes the instruction, it doesn’t return a 404, resource not found. 
 
Fourth, the client is asking the server to DELETE “Joe” in its system. The server responds with 
another “404,” which interprets as “Resource not found.” The server responded this way 
because we had called our key “name” instead of “Joe.” 
 
Fifth, the client is asking the server to DELETE “name” in its system. The server responds with 
a “200,” which interprets as “Ok,” a response for successful HTTP requests. This response 
was successful because we referred to the correct key name. 
 
 

Page 17 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 17 

 
 

PRESENTER 1 SAY: 
Now, we’ll discuss REST outputs, including what they are and how they work.  
 
 
 
 

Page 18 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 18 

 
 

PRESENTER 1 SAY: 
When inputting commands to a web browser, the browser sends a standardized action to the 
web server. REST interprets the action and retrieves the information, and the web server takes 
the data and sends the output back to the web application. Two common REST outputs are 
extensible markup language, or XML and JavaScript Object Notation, or JSON. Outputs are 
essential because they become what the user will see. 
 
The web application determines where the output should be sent. It can either be displayed 
back to the web browser or used elsewhere. If the output is sent back to the user, then the 
REST output is any data that can be displayed on the screen. Examples of this range from 
small bits of information like names, addresses, and phone numbers to large amounts of 
information, such as a user profile on Facebook or driving directions between two points on a 
map.  
 
PRESENTER 2 SAY: 
Other examples of REST outputs are HTTP response codes. These codes communicate the 
web server’s result of a requested action. The most common HTTP response code is 200, 
which states that the request was delivered. A recognizable response code is the HTTP 404 
error, which we just talked about, that is usually used when a resource is not found. A web 
server will post a “404 Not Found” to a web page. HTTP response codes are important 
because they communicate the end result of the initial request. 
 
Additionally, Java API for RESTful Web Services, or JAX-RS, is an API that provides support 
in creating REST outputs. This API is used to translate Java text to XML or JSON outputs. This 
results in a quicker outcome for web service creation. Now that we’ve covered the basics of 
REST outputs and HTTP response codes, let’s move on and talk about fundamental data 

Page 19 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

types and how they work with REST outputs.

Page 20 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 
Slide 19 

 

 
 

PRESENTER 2 SAY: 
In programming languages, data types are used to assign values to information that have 
specific characteristics. Data types are categorized by a range of values, how they’re 
processed, their meaning, and how they’re stored. Fundamental data types include, but aren’t 
limited to, numbers, Booleans, strings, and characters. In REST outputs, data types have an 
agreement with any API between the sender and the receiver that the returned data should 
stay consistent. For example, if a message is sent requesting the answer as a string, the 
receiver can’t send back a Boolean. That would violate the contract.  
 

 
 
 

Page 21 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 20 

 
 

PRESENTER 1 SAY: 
Now that we’ve talked about REST outputs and data types, we’d like to hear from you. What 
are some real-world examples of REST outputs? Type your responses in the Lync Chat 
window on the left. 
 
PRESENTER 2 SAY: 
Remember, REST APIs allow communication between your application and another specific 
REST API application. Let’s say you run a Twitter newsfeed. You can write software that uses 
Twitter’s REST API to send messages to your followers. If the message is successfully sent to 
Twitter, you would respond with HTTP 200, or OK. If there was some issue, maybe you’d 
respond with a 404 or 409, depending on the situation. 
 
PRESENTER 1 SAY: 
Now, we’ll move on to discuss XML and JSON, the two common formats used for REST 
outputs. 
 

Page 22 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 21 

 
 

PRESENTER 2 SAY: 
As we mentioned earlier, REST sends and receives HTTP messages. The information sent 
back to the web application is in either XML or JSON format. Which one you use will depend 
on many factors, including VA guidelines and other APIs you’re communicating with.  
 
Internet media types are important to XML and JSON because they identify the type of data a 
file on the Internet contains. For example, web browsers use them to determine how to display 
files that are in XML or JSON. It’s important to remember that RESTful web services only 
support one data format. For example, if you send a media type of XML to a JSON-only web 
service, you’re going to get JSON data back.  
 
Let’s move on and discuss the fundamentals of XML and JSON as well as some benefits of 
each. 
 
 
 
 

Page 23 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 22 

 
 

PRESENTER 2 SAY: 
XML is a markup language used to make sure there’s a standard when sending data. It defines 
a set of rules for encoding documents in both a human-readable and machine-readable format. 
It’s a popular and widely implemented standard. You can use it to create documents and data 
records that are fully transferable and independent from platforms. XML differs from most 
markup languages because it has the capability to carry and store data, focusing on the way 
the data is created in the document. Other markup languages only display how data looks.  
 
XML has a variety of features, and there are three that you should become familiar with. They 
are tags, values, and attributes. Tags are the names of individual elements. In XML, tags aren’t 
predefined; the author of the document is in charge of creating them. XML tags with values are 
the data contained between the open and closed tags. A XML tag with an attribute is data 
contained within the tag itself. XML tags and their attributes are defined in document type 
definitions, or DTDs, also known as schemas. The schemas can be loose definitions or 
constrain what types of characters are allowed in values. 
 
Now that we’ve discussed the basics of XML, let’s move on to JSON fundamentals. 
 
 
 
 

Page 24 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 23 

 
 

PRESENTER 1 SAY: 
JSON is a markup language similar to XML. It stores information in an organized manner and 
outputs data logically so it can be interpreted for its users. Both languages use hierarchal 
values and are transported similarly. For example, JSON contains values within values, much 
like XML contains elements within elements. The JSON data is transported in the body of an 
HTTP message just like with XML. 
 
JSON differs from XML because its library is smaller. However, JSON is faster and easier to 
dissect for programmers. It’s becoming the standard for web-based applications. A study in 
2012 from Engineer Magazine found that 57 percent of all web-based applications are built 
using JSON. 
 
JSON has three elements that you should become familiar with. Those are key values, objects, 
and arrays. A JSON key value is a string in double quotes with a value, a number, true or false, 
and an object or array. A JSON object is an unordered set of name and value pairs and always 
begins and ends with a left and a right brace. Each name is followed by a colon. A JSON array 
is an ordered collection of values. Like a JSON object, arrays begin with a left bracket and end 
with a right bracket and are separated by a comma. 
 
Now that we’re familiar with JSON fundamentals, let’s move on to discuss the benefits and 
differences between JSON and XML. 
 
 
 
 

Page 25 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 24 

 
 

PRESENTER 1 SAY: 
XML is a larger, more structured language and has a richer set of data-type checking tools. 
You can run your XML against XML schema definitions, or X-S-Ds, to make sure that data is in 
the format you want. XML is generic and unconstrained. You can take almost any data 
problem, such as configuration files or log files, and apply XML to it. JSON is the opposite of 
XML. It’s limited and it can’t do a lot of things that XML can. However, JSON’s constraints 
produce simple and efficient results. It’s smaller and concise structure makes it easier to use in 
a web environment and makes online performance less of an issue. 
 
 
 
 

Page 26 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 25 

 
 

PRESENTER 1 SAY: 
Now, let’s talk about REST design guidelines that should be used to create RESTful web 
services. We could spend hours talking about design guidelines for RESTful web services, but 
we have narrowed it down to two basic guidelines. The guidelines are to use nouns, not verbs, 
and to create an effective API so that other programmers will be able to follow your logic. Let’s 
talk in more depth about these. 
 
 
 
 

Page 27 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 26 

 
 

PRESENTER 1 SAY: 
First, use nouns, not verbs. It’s important to separate your API into logical resources. Like we 
discussed earlier, resources are nouns not verbs. Resources are identified by a URI. A good 
RESTful URI is a noun such as a “user” or book.” It could also be a collection of resources, 
which would be specified with a plural noun, such as “books.” RESTful URIs also identify 
resources or nouns. They tell you what they are. RESTful URI’s shouldn’t tell you what they do. 
Like we discussed earlier, the “do” comes when you apply a verb or a standardized action to 
the URL. 
 
 
 
 

Page 28 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 27 

 
 

PRESENTER 1 SAY: 
Another consideration is to stick to plural nouns in your URI node names. It’s an accepted 
practice to always use plural node names to keep your API URIs consistent across all HTTP 
methods. This is based on the concept that “customers” are a collection within the service 
suite, and the ID or “12345” refers specifically to an individual customer. Whatever convention 
you use, make sure it is acceptable at VA and is recognized across your development team to 
ensure consistent interfaces. 
 
 
 
 

Page 29 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 28 

 
 

PRESENTER 1 SAY: 
You should create an effective API so that other programmers will be able to follow your logic. 
Remember, an API is an interface plus the documentation. So when creating APIs, it’s 
important to remember that they’re only as good as your documentation. Remember, APIs are 
also user interfaces for other developers to use in the future. When creating APIs, you need to 
make them easy to understand. It’s a good practice to create APIs that have version numbers. 
Doing this is a great way for other users to locate and choose which version to use. 
 
 
 

Page 30 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 29 

 
 

PRESENTER 2 SAY: 
Now that we’ve talked about REST design guidelines, we’d like to see what you’ve learned 
about JSON and XML. So based on our discussion, what are some key differences in the 
features of JSON and XML? Type your responses in the Lync Chat window on the left. 
 
PRESENTER 1 SAY: 
Something that I think is interesting about JSON and XML is that they have different structures. 
Requests and returned data will always stay in a consistent format. If you send an XML 
request, you can’t expect to receive your response in JSON.  
 
 
 
 
 

Page 31 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 30 

 
 
PRESENTER 2 SAY: 
Now we’re going to show you how to create a more complex API with the standard actions we 
discussed today, which is also your homework exercise. In your exercise, you’re going to use 
the four standard actions: GET, PUT, POST, and DELETE. We’re going to show you what 
you’ll do for this exercise.  

Page 32 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 
Slide 31 

 

 
 

PRESENTER 2 SAY: 
To begin this demo, we’re going to use your exercise files to import Course-2.zip into Eclipse, 
and then expand the folders to find the Server.java file. Next, you’ll need to expand the Java 
Resources folder. Once you’ve expanded this folder, locate the src/main/java folder and 
expand it to open up the gov.va.rest file. After expanding the gov.VA.itwd.rest file, locate the 
Server.java file. Double-click the Server.java file to open the exercise on your screen. Your 
screen will open and code will be displayed.

Page 33 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 32 

 
 
PRESENTER 2 SAY: 
Scroll down until you see the block notes about @GET. Locate the line comment about adding 
an @Path and @Produces. Your exercise for the GET standardized action starts here. Notice 
it says in green in the code, “Add the @GET to let the server know this is the method to be 
called when a GET request is issued.” 

Page 34 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 33 

 
 

PRESENTER 2 SAY: 
Specifically, it says to add @GET, the @PATH(“/{id}”) to inject the path ID, and 
@Produces(“application/json”) to identify the output type. The green notes tell you exactly what 
to put in the code and why. 
 
Just follow the line comments and add the necessary Java when it asks you for it. It’s very 
easy to follow the directions in the code. The Guidebook walks you through the whole activity. 
When you scroll down through the code, you’ll see additional block notes about @POST, 
@PUT, and @DELETE. Just follow the directions for each one. That’s it!  

Page 35 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 34 

 
 

PRESENTER 1 SAY: 
For the homework assignment, we’re going to ask you to create a public REST API using the 
four main REST standardized actions GET, POST, PUT, and DELETE. You’re going to go into 
the same file that you did for course one and complete the code. You’ll also be able to review 
the standardized functions and become more familiar with how these work.  
 
For those of you who haven’t done this before, it may sound a little scary, but the guidebook 
will walk you through it. We would like for you to complete this assignment before the REST 
Beginner Part 3 session because we will build upon what you have learned in this course. 
 
If you have any issues or questions about the assignment, we’ll have a separate Q&A session 
that you can dial into and ask questions.  
 
 
 

Page 36 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 35 

 
 

PRESENTER 1 SAY: 
We’ve covered a lot today. We first talked about REST standardized actions and HTTP web 
conversations. We explained common standardized actions and how they worked. We also 
described how to use standardized actions using the Jersey library. Next, we talked about 
REST outputs and fundamental data types, and then we discussed XML and JSON and talked 
about their unique characteristics. Along the way we showed you each of these languages and 
talked about guidelines for how to design RESTful web services. 
 
PRESENTER 2 SAY: 
Now that we’ve given a summary, let’s open up the conversation to you and answer any 
questions you might have. 
 
 
 
 

Page 37 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 36 

 
 

PRESENTER 1 SAY: 
Please type in your questions in the Chat window on the left-hand side of your screen.  
 
 
 
 
 

Page 38 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 37 

 
 

PRESENTER 1 SAY:  
We’ve got three handouts for you to download today. We’ve got a guidebook for your self-
paced homework assignment, the full course transcript, and the directions for self-certifying in 
the TMS that you took this course. 
 
To access the downloads, select the paperclip icon in the Lync toolbar above the list of 
participants. Next, select the right arrow next to the file in the Attachments pop-up menu. From 
there you can select Open, or select Save As to navigate to a location where you can save the 
download.  
 
 
 
 

Page 39 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 38 

 
 

PRESENTER 1 SAY: 
As we mentioned earlier, this is the second course in a three-course series talking about the 
basics of REST.  Be sure to watch for ITWD training announcements or look at the training 
calendar in the ITWD portal for additional REST training. Thank you for joining us in today’s 
session. 
 
 
 
 
 

Page 40 
 



 

I n t r o d u c t i o n  t o  R e p r e s e n t a t i o n a l  S t a t e  
T r a n s f e r  ( R E S T )  w i t h  J a v a ,  B e g i n n e r  P a r t  2  

 

 

Slide 39 

 
 

PRESENTER 1 SAY: 
Take a minute to self-certify to get credit for your participation in this training. TMS self-
certification instructions are provided on the slide.  
 
Once you’re self-certified, you will receive a link to complete an evaluation for this training. 
 
We will leave the instructions up for a couple minutes to allow you time to self-certify. 
 
This concludes Introduction to Representational State Transfer (REST) with JAVA, Beginner 
Part 2.  
 
Thank you for your participation.  
 
 
 
 

 

 

Page 41 
 


	Structure Bookmarks
	Introduction to Representational State Transfer (REST) with Java, Beginner Part 2 
	Slide 1 
	Slide 2 
	Slide 3 
	Slide 4 
	Slide 5 
	Slide 6 
	Slide 7 
	Slide 8 
	Slide 9 
	Slide 10 
	Slide 11 
	Slide 12 
	Slide 13 
	Slide 14 
	Slide 15 
	Slide 16 
	Slide 17 
	Slide 18 
	Slide 19 
	Slide 20 
	Slide 21 
	Slide 22 
	Slide 23 
	Slide 24 
	Slide 25 
	Slide 26 
	Slide 27 
	Slide 28 
	Slide 29 
	Slide 30 
	Slide 31 
	Slide 32 
	Slide 33 
	Slide 34 
	Slide 35 
	Slide 36 
	Slide 37 
	Slide 38 
	Slide 39 




